Dr. Namandje Bumpus discusses her educational path, and her research career in Pharmacology

While black history should be celebrated throughout the year and not just in February, the month provides the opportunity to not only recognize African Americans who have made significant contributions in the past, but also those who are presently making history. As there are numerous African American scientists and innovators who are typically celebrated during black history month in Science, Technology, Engineering and Mathematics (STEM), there are also quite few African American scientists in modern times that are worth recognizing. One such scientist is Dr. Namandje Bumpus (pronounced Na-Mon-Jay), of The Johns Hopkins University. On Feb. 1, 2016, Dr. Bumpus granted an interview to discuss her background, the path to her current career, and potential avenues for under-represented minorities to get involved in STEM. I originally published this piece when I wrote for the Examiner, and two years later, I’m republishing here on my blog.

Anwar Dunbar: First Namandje, thank you for this opportunity to interview you. My writings in February tend to focus on Black History Month and as a scientist myself I want to shine the light on other African American scientists and innovators who are currently in the trenches expanding our scientific knowledge. Also being in the biological sciences versus the information technology and robotics fields, it’s not so obvious to the lay person what a pharmacologist is, so for all of these reasons I thought about you. With those things being said, let’s start.

Talk a little bit about your background. Where are you from? Were there any scientists in your family who you were exposed to at an early age? Were you always interested in science? If so, was it always biology or were you good at other parts of STEM, mathematics for example?

Namandje Bumpus: I was born in Philadelphia, but grew up in western Massachusetts. There were no scientists in my family. I had an uncle who spent some time working in a lab as an undergraduate student. He wasn’t a scientist, but he still talked to me about how he enjoyed working in the lab. Hearing about his experiences working in a lab was interesting to me. Early on I liked chemistry. My parents and others in my family started getting me chemistry sets when I was in elementary school because I started vocalizing that I thought science would be something interesting to do.

I worked through them (chemistry sets) and I really liked it, and when I was ten (pre-email), I actually wrote a letter to the American Chemical Society to ask about information for careers for chemists. They sent me back lots of brochures and a letter discussing things you could do with a chemistry background. That really got me even more excited just having all of that information and starting to dream about the things that I would do. So I was really more chemistry focused until high school when I finally took a physiology class, and then realized that I wanted to lean more towards biology and physiology.

AD: Talk briefly about your educational path. We overlapped at the University of Michigan’s Department of Pharmacology. How did you get there? What got you interested in research?

NB: I went to Occidental College, a small liberal arts college and did some research there. We didn’t have many labs so I was doing plant research and I really liked that, but I thought that I wanted to do something that was more directly related to human health and physiology, so I started researching certain fields to see what that would be. I came across Pharmacology and it was something that seemed interesting, so the summer after my junior year, I applied for summer research programs in Pharmacology so I could try it out.

Michigan had a summer program called the Charles H. Ross Program for African American undergraduates to come and work in the Pharmacology Department for a summer, so I applied for that and I got it. That summer before my senior year, I had a really great experience in the department in general. I worked in Dr. Richard Neubig’s lab, and they gave us a short course where I was introduced to the principals of Pharmacology. That really sold me on Pharmacology and since I also had such a great experience in the department, I became really interested in going to the University of Michigan for graduate school.

AD: Not a lot of people understand what doctoral training is like and what it entails. You chose the lab of Dr. Paul Hollenberg which was a Cytochrome-P450 lab and we will discuss that, but what was it like learning how to do research? For example, what was the question you were looking to answer through your thesis project?

NB: In my project I was specifically looking at how genetic variances and mutations that existed in the population could impact their ability to metabolically clear certain drugs that are used clinically. We focused on a drug used to treat depression called Buproprion, and we looked at an HIV drug called Efavirenz. So I was looking at how genetic mutations could affect clearance of the drugs, and how those genetic variances might impact different people having genetic differences in drug-drug interactions.

AD: So would that be in the area of Pharmacogenomics?

NB: Yes.

AD: So as a Postdoctoral scientist did you work on a similar project? Or did you go in a completely different direction?

NB: Yes, my postdoc was somewhat different. I was looking at how lipids and fatty acids are cleared and how we regulate that process. Specifically, I was trying to find which pathways in cells were responsible for the metabolism of fatty acids. In particular, we were interested in stress activated pathways and seeing how activation of these stress pathways impacted expression of Cytochrome P450s that were responsible for metabolism of lipids.

AD: So right now in your own lab, what are you all working on?

NB: Lots of different things. The major focus has still been P450s, but looking at two different areas. The first is seeing how P450s and their metabolites contribute to drug induced toxicities, and to see if there are ways we can mitigate toxicities. We’ve had a focus on drug usage through HIV. The other side of my lab has been helping in collaborative clinical teams to develop drugs for HIV prevention, and trying to figure out how people’s pharmacogenetic variances in drug metabolism can impact their therapeutic responses when they are taking drugs used for HIV prevention.

AD: Now just briefly, from your doctoral studies through your postdoc, were there skills that you had to develop or did you come ready to go with everything? What were your major learning points as you worked through your thesis and your postdoc?

NB: My postdoc was really different. The experimental tools that I learned during my dissertation didn’t really help with what I wanted to do in my postdoc. I wanted to learn something new. Obviously the thinking and knowing how to design experiments was translatable. In graduate school I was doing a lot of mass spectrometry, more chemical-type techniques, and more biochemistry and enzymology. In my postdoc I was doing more in vivo biology and physiology, so I was using mice for the first time. I had never worked with a whole animal before. So I had to do a lot of cell isolation experiments and injections, things I had never done before; so I really had to learn a lot of new techniques for my postdoc. Now in my lab its great because we’re able to combine all of that, so we do a lot of mass spectrometry, biochemical techniques, in vitro mechanistic stuff/enzymology, as well as a lot more whole animal work, and a lot more whole cell work, things that I picked up in my postdoc, and I was able to combine both skill sets to build my program.

AD: And you did your postdoc at?

NB: The Scripps Research Institute.

AD: Did you always have the leadership skills necessary to run a lab or did you have to learn them? Was it a work in progress?

NB: Yes, you always build on it and it’s still a work in progress. I think you don’t necessarily get trained for it in graduate school or as a postdoc, but I tried to participate in things that were extracurricular; the Association for Minority Scientists at Michigan, and in my postdoc I was a part of our postdoctoral association, so I tried to pick up leadership skills by being involved in those other groups; but even still you’re not prepared to run your own lab. You really learn it as you go; you try things to see how they work. You talk to senior colleagues to get their advice and potentially go back and try something else. You take mentorship or leadership classes which I’ve done too, but I think it’s always a work in progress.

AD: We’re almost done. For the lay person, what are Cytochrome P450s and why are they important?

NB: They are proteins expressed in our bodies in all tissues, but mostly in the liver. What they largely help us to do is clear foreign compounds from our bodies. So for instance, if you are taking a drug therapeutically, you take it orally and you swallow it, one of the first places it’s going to go is into your liver. Your liver doesn’t want it to hang around and be inside of your cells forever, so we have these proteins that will change (biotransform) these drugs structurally to make them something that can be removed from your cells and removed from your liver. Thus, P450s are proteins that help us to clear foreign compounds and molecules. Drugs are obviously a large percentage of the foreign compounds that we’re exposed to, so we call them drug metabolizing enzymes.

AD: All of us went different routes after leaving Michigan. Some landed in the private sector in big pharma or the chemical industry. Others like myself, went into the public sector on the regulatory side, and I think I’m one of the only ones from our department to do that. A large chunk of our graduates went into academia which requires a ton of skills: leadership skills, entrepreneurial skills, and teaching skills. It’s also a very competitive environment and I very much admire my peers, such as yourself, who went that route. What made you decide to go into academia as opposed to the private sector or some other track?

NB: I think academia is the only thing that really fits my personality. I really like interacting with and training students. I like having a really close relationship with them where they come and work in my lab for several years while they work on earning a Ph.D. I get to see them grow. It’s similar with postdoctoral fellows. They come to the lab for a couple of years and I help them try to get to the next stage in their career.

I really love the educational aspect of the training. Additionally, I really like the broader training environment. In addition to my associate professorship, I’m also associate dean in the area of education where I get to spend a lot of time with graduate students who aren’t in my lab. I work more broadly with other graduate students helping them decide which lab they should choose for their thesis, and what they want to do next with their career. I further help them identify training opportunities for careers that they might want outside of academia. I really enjoy education training so this is the place for me.

Also, I like that scientifically, if I can dream it I can do it. If we have something that I really want to test in my lab, we can find a way to do it and test it out. I like the autonomy and the ability to be that creative with our science as well, so I think it’s a really good fit for my personality and goals.

AD: Now lastly, what advice would you give to young African American girls or those who are curious about science, but not sure that they can do it, or parents who are reading this and want to expose their kids to science?

NB: I think first knowing that if it’s something you really want to do, then you can do it. I think what’s most important about being a scientist is the passion for it and the interest. It’s not about everyone thinking that you’re brilliant. It’s about being interested and being a curious person and organically interested in science. I think it depends on which stage you’re at. If you’re in elementary school, starting off like me getting chemistry sets and microscopes is a good start – getting kids the type of gifts that will stimulate their interest and curiosity in science. Make them see that they do have the ability to do experiments and explore things on their own, and I really think that can get them even more excited about it. Microscopes, chemistry sets, and telescopes, those are things you start with from five years old.

Often times there are summer camps. At Johns Hopkins we have summer programs for people, middle school students and high school students. At many different stages you can contact local universities and museums to see if they have summer camps for science that kids can go to and that can be helpful. A lot of schools including ours have high school programs. In ours you can spend the whole summer working on a project and I think that’s a great way to see if you like scientific research and really get excited about doing research; so I think there are a lot of opportunities. You just have look out for them. The best place to start is contacting local universities and museums. Most universities will have a community engagement program you can contact for opportunities.

AD: The last question, Namandje, involves something personal you shared with me. The science community recently suffered a great loss, someone who was a mentor to you. Would you like to say a few words in memory of this individual? From what I gather, this person was also a female African American scientist.

NB: Sure. Her name was Dr. Marion Sewer. She was a full professor at the University of California-San Diego, and a Pharmacologist as well. She worked on endocrinology and really did a lot to understand the endocrine system and how it impacts lipid metabolism.

She was just a very highly regarded scientist and she was also someone who cared a lot about outreach. She ran a lot of programs that were focused on diversity and giving opportunities for people in high school through undergraduate school, and really spent time with postdocs to make sure there were really opportunities for people of different backgrounds, including African Americans, particularly for African Americans to have exposure to science. She was someone who was a really great colleague, a really great scientist and someone who also, in a rare way, really cared about people, service, equity and inclusion in science. She really inspired me and helped me to get my first National Institutes of Health (NIH) grant by reviewing it for me several times. She was more senior and experienced, and I think a lot of us have that same story where she helped us get started because she was so generous with her time, so it was definitely a really big loss.

AD: Well thank you for this interview opportunity, Namandje, and your willingness to discuss your life and career. A lot of people will benefit from this.

NB: Thank you, Anwar.

Thank you for taking the time to read this interview. If you’ve found value here and think it would benefit others, please share it and or leave a comment. To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site. Lastly follow me on the Big Words Blog Site Facebook page, on Twitter at @BWArePowerful, and on Instagram at @anwaryusef76. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.

Dr. Quinn Capers, IV discusses his path, #BlackMenInMedicine, and the present landscape of medical education

One of the focuses of my blog is STEM (Science, Technology, Engineering and Mathematics), and my most central principle is “Creating Ecosystems of Success”. While we tend to think of clinical medicine as strictly a ‘Healthcare Profession’, its foundations are actually rooted in the ‘Basic Sciences’. I discovered Dr. Quinn Capers, IV on Twitter one day by chance and started following him when he was tweeting about medical education at “The Ohio State University”. The ‘hashtag’ he used in most of his tweets ‘#BlackMenInMedicine’ further piqued my curiosity. After seeing more tweets and pictures of himself and his medical students, I reached out to Dr. Capers, the Dean of Admissions of the Ohio University’s Medical School, and he agreed to do the following interview. In our interview which coincided with Black History Month, Dr. Capers discussed his own educational path, the ‘hashtag’ #BlackMenInMedicine, and the current landscape of medical education for prospective students.

Anwar Dunbar: Thank you for the opportunity to interview you Dr. Capers. I stumbled across one of your tweets one day which included the hashtag you often use; ‘#BlackMenInMedicine’. It caught my eye, in addition to the pipeline of black male doctors, you’re training there at Ohio State University. Even though you’re at The Ohio State University and I’m a University of Michigan alumnus, I thought interviewing you would be very beneficial to my audience as I’m a STEM practitioner and an advocate myself. Also even though we typically don’t think of medicine as a science, it very much is. With that, can you talk briefly about yourself? Where are you from? What got you interested in medicine?

Quinn Capers: Thank you for the honor of being interviewed Dr. Dunbar. Speaking of Black History Month, your last name reminds me of my high school in Dayton, Ohio. It’s named after our hometown hero; the first black poet who made a living with poetry, Paul Laurence Dunbar. I actually was born in Cleveland, Ohio and moved to Dayton when I was two or three years old which is where I grew up.

My answer to the question, ‘What do you want to be when you grow up?’ was always, ‘a Doctor,’ even as a toddler. I didn’t have any doctors in my family and to be honest, we didn’t see doctors regularly. It was only on an ‘as needed’ basis – i.e. if we were injured or got really sick. I’m not really sure where the thought came from, but I now assume God planted that seed in my heart and mind, as I truly feel I was ‘called’ to this profession.

AD: What is your family’s background?

QC: Though I was born and raised in Ohio, my parents and both sets of grandparents are from Talladega, Alabama. My parents moved to Cleveland, Ohio before I was born, and as stated earlier, we relocated to Dayton before my third birthday. My father is a retired police officer and my mother is a retired postal worker. They divorced when I was very young, and my mother raised my sister and myself. My sister and I were the first in our family to attend college.

AD: Are you the first medical doctor in your family? If not, who inspired you?

QC: Yes I am, but I have a cousin who was studying Pre-Med at the Tuskegee Institute when I was in elementary school. We spent many hours talking about our shared dream of being physicians, and she was always very loving and encouraging. She is now a successful Physician Assistant in New York City.

AD: Describe your educational path.

QC: I attended public schools in Dayton, Ohio on the city’s west side – the ‘black’ side of town. I was always enamored with Black History and read voraciously about black heroes. Because of this, I knew I wanted to attend a Historically Black College/University (HBCU). I wanted to be taught by professors that were making Black History and I wanted to be in the same buildings, on the same campus, walking the same path as so many of the black intellectuals, artists, and revolutionaries that I had read about.

I chose Howard University in Washington, DC for my undergraduate studies – one of the best decisions I made in my life. For medical school I returned to my home state to attend the Ohio State University College of Medicine. Since I had attended predominantly black schools from K-12 and then Howard, medical school was my first time stepping foot into a Predominantly White Educational Institution (PWI). People have asked me if being at a PWI after having been cradled in majority black institutions my whole life led to my feeling out of place, or ‘inferior’, or if it gave me an ‘impostor syndrome’. No, it was actually just the opposite. Because I had seen so much black excellence, I felt invincible. After medical school, my residency and fellowship training in internal medicine, cardiovascular diseases and interventional cardiology, took place at Emory University in Atlanta, Georgia.

AD: Were there any particular challenges for you on the road to becoming a medical doctor?

QC: There weren’t any big challenges that stand out other than the need to prioritize studying, not over partying, and delaying gratification. Many of my friends were enjoying being finished with school, buying their first car, first house, and essentially living their lives while I was still in school and/or training. But since the opportunity to work towards an MD was a dream come true for me, none of it seemed like an inordinate challenge.

AD: What is your medical specialty?

QC: I am an ‘Interventional Cardiologist’, which is a heart specialist who specializes in opening blocked arteries and repairing heart abnormalities or defects with ‘catheter-based’ approaches. We repair the heart by accessing the circulation through an artery in the arm or leg, and then threading tubes and high-tech catheters, balloons, stents, and lasers to the heart.

AD: If I recall correctly, former Vice-President Dick Cheney had a series of those procedures. How did you ascend to become the Dean of Admissions at the Ohio State University’s Medical School?

QC: After spending the first eight years of my career in a private cardiology practice, I missed teaching and the academic environment, so I sought a position at my medical school alma mater. In private practice, nearly 100% of a physician’s time is spent taking care of patients. In what we call ‘academic medicine’, doctors work at medical schools and university teaching hospitals and have three responsibilities: caring for patients, teaching medical students and young doctors, and performing research. I thus left private practice to go into academic medicine.

After a short period of time I won several teaching awards from the students. When the Associate Dean of Admissions position opened, a colleague encouraged me to apply for it. My initial response was, ‘No that isn’t a part of my plan,’ which was to impact healthcare and improve people’s lives as the best interventional cardiologist and medical educator I could be. After giving it some thought, I realized that overseeing the admissions process at one of the country’s largest medical schools would allow me to have an even greater impact on healthcare than direct patient care. So, I decided to apply for the position and the rest is history. Now I perform both roles – Interventional Cardiologist and Associate Dean of Admissions, allocating approximately half of my time to each role.

AD: Let’s go back to #BlackMenInMedicine? Where did the hashtag come from?

QC: There are many black male physicians on Twitter. One day in 2017 some of us were having an online discussion about the landmark 2015 Association of American Medical Colleges publication entitled Altering the Course: Black Males in Medicine, which details the current severe shortage of Black males entering the medical profession. According to this publication, there were fewer Black males applying to medical school in 2014 than in the late 1970s and the downward trend continues. This portends a severe lack of Black male physicians in the future.

We discussed strategies to combat this trend and collectively came up with the idea of an online campaign to flood social media with images of Black male physicians at work, at play, and simply living their lives. The primary goal is to be role models for and inspire young men (and anyone) to pursue medicine. Other goals include changing the narrative about Black males – i.e. that not all are ‘dangerous’, but that many are physicians saving lives and serving humanity. We also wanted to speak out about injustice in any form against any group. The name of the campaign is thus ‘#BlackMenInMedicine’.

AD: This is an optional question, but based upon today’s climate, have you gotten any pushback because it acknowledges just men and not women?

QC: Very little that has been openly stated, but we are sensitive to the fact that there are likely some who feel it’s divisive and not promoting unity. We think that it’s possible to promote Black men in medicine while supporting many other groups. Many of us also tweet using other hashtags that preceded #BlackMenInMedicine, such as #WomenInMedicine, #ILookLikeASurgeon (which promotes images of women in surgery), and others. We took this on because the low numbers of Black men in medicine, in academic medicine, in leadership roles, and amongst medical school applicants has reached a crisis. I should also point out that we, the original creators of this campaign, do not feel that use of the hashtag is proprietary. Anyone who wants to promote diversity in medicine, and particularly encourage Black men to pursue medicine, is welcome to use the hashtag. In fact, we encourage it.

AD: Are there particular programs at The Ohio State University for minority medical students?

QC: Yes. At the Ohio State University College of Medicine we believe that diversity drives excellence in healthcare, and we have several strategies to recruit and support diverse students and women. We’re proud to be leaders in educating women and underrepresented minority physicians. The last four entering classes have been predominantly women, and according to 2017-2018 AAMC statistics, OSU ranks sixth of nearly 150 medical schools for the number of enrolled black medical students. We also have a post baccalaureate program called ‘MEDPATH’ that is focused on increasing the number of underrepresented and/or disadvantaged students entering medical school.

AD: When I was an undergraduate at Johnson C. Smith University in the late-1990s, many of us pondered practicing medicine, but few of us understood what it took to get into medical school – something a particular professor reminded us of regularly. Aside from the necessary academic credentials, what are some of the personal qualities aspiring medical students need to be successful?

QC: Today, most medical schools judge applicants using the Association of American Medical College’s ‘holistic review’ framework, which recommends balancing the applicant’s: experiences, personal attributes, and academic metrics (MCAT and GPA) when making a decision about their candidacy. While the MCAT (Medical College Admissions Test) and GPA are self-explanatory, it’s important that aspiring physicians understand the importance that past experiences and personal attributes will play when your application is being reviewed. You will need to have a track record of compassionate community service, healthcare-related experience (shadowing or volunteering/working in a healthcare setting), leadership, and often research.

Regarding personal attributes, medical schools desire students who are: compassionate, collegial, curious, and who are self-directed learners. While the exact attributes and experiences may vary by school, medical school hopefuls need to ensure that their experience portfolio is full and that their recommenders can speak to the attributes mentioned. Often the difference between the applicant who gets accepted to medical school and the one who doesn’t is not their MCAT score or GPA, but more so a matter of which applicant had the better strategy. Gaining acceptance to medical school is very competitive and applicants should have a well-thought out strategy. Some examples of strategic questions that students should think through include:

• Will I take a “gap year”?
• If I plan to take the MCAT in spring of my junior year, when should I take Physics?
• Which leisure-time activity will demonstrate the attributes that medical schools seek?
• Should I apply before my MCAT scores return?
• If my undergraduate grades are low, should I plan on graduate school? If so, what discipline? MPH or Masters Degree in a biomedical science?

I consider it part of my mission to provide the answers to these questions to students as early in the pipeline as possible. We do this via our OSU College of Medicine website (https://medicine.osu.edu/admissions/md/tips-and-advice/pages/index.aspx), by speaking to students via webinars (https://www.youtube.com/watch?v=Q_7B3qUjuJs), and via social media.

AD: Describe the landscape today in terms of getting into medical school versus when you were aspiring to study medicine yourself.

QC: I applied to medical school in 1986. At that time, the weight of academic metrics was definitely more than 1/3 of a candidate’s application. Community service was almost ‘optional’ at that time. Academic achievement is still very important, and always will be when evaluating medical school applicants. However, it is very unlikely that a student will be accepted to medical school today without a record of compassionate community service and healthcare-related experience. Also, many medical school curricula employ both group-based learning and independent learning, so schools look for evidence of collegiality and self-directed learning to provide evidence that a student will be successful.

AD: Okay, Dr. Capers, that’s all I’ve got. Thank you again for this opportunity to interview you, and also for providing the pictures to go along with this interview. I understand that your time is very valuable. Perhaps we can do follow up interviews at some point. Do you have any other parting comments or thoughts?

QC: No. Thank you again for giving me this opportunity, Dr. Dunbar. I’d be delighted to do this again, or even to make it a recurring feature. Good luck to all of your readers!

Thank you for taking the time to read this interview. If you’ve found value here and think it would benefit others, please share it and or leave a comment. To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site. Lastly follow me on the Big Words Blog Site Facebook page, on Twitter at @BWArePowerful, and on Instagram at @anwaryusef76. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.

Are we losing our soft skills due to technology?

One of the principles of my blog is “Critical/Objective Thought” meaning that I usually try to see things from all angles as opposed to just one.  I might lose some readers here, but yes I do switch between CNN and Fox News when trying to understand what’s happening politically and in current events.  Recently Tucker Carlson interviewed Mike Rowe of the show “Dirty Jobs”.  I support Rowe and his messages about all jobs being necessary and important (even the dirty ones), and that our society has over glamorized college and the pursuit of white-collar jobs at the expense of trades, and blue-collar jobs.

Towards the end of their discussion, Carlson and Rowe talked about the growing use of Emojis which have become a very, very popular form of digital communication using symbols as opposed to complete or even truncated words (great vs gr8 for example).  Rowe said something very interesting which is that the use of these Emojis may be eroding the “Soft Skills” in our society – particularly for individuals seeking employment which involves talking with potential employers during face to face interviews, and where understanding the nuances and complexities of both verbal and nonverbal communication is highly advantageous.  He further said that he would encourage individuals looking for jobs these days (some for the first time) to develop their Soft Skills.

According to Investopedia, “Soft Skills” are character traits and interpersonal skills that characterize a person’s relationships with other people.  Just off the top of my head, Soft Skills involve being able to speak clearly, listen and also understand the nuances of verbal and non-verbal communication – making eye contact with other individuals, and being able to give more than one word answers for example.  It can also involve being able to read someone’s mood by the answers they give and don’t give, or simply their body language.  Again these are important on job interviews.

But a job interview is just getting your foot in the door.  What about staying at that position?  Once hired, soft skills can make all of the difference in the world in terms of excelling in that particular position and helping an organization thrive – particularly when achieving the mission involves working on teams.  In any organization there are personalities to work with and juggle which can affect the mission.  Some personalities work well together while others clash.  There are rare individuals who get along with everyone.  Personality clashes and petty bickering can cause production to grind to a screeching halt to the detriment of that organization.  Soft kills are critical in navigating interpersonal issues and conflict resolution.

Emotional Intelligence” can fall under soft skills.  According to Psychology Today, Emotional Intelligence is defined as the ability to identify and manage your own emotions and the emotions of others.  The other are explanations for it, but I tend to think of it in terms of forming alliances, and not burning bridges.  This involves awareness of self and of others – understanding what drives your colleagues, understanding current and past rivalries between colleagues, understanding who is on the fast track towards promotion, and also being more emotionally proactive and less reactive in adverse circumstances, particularly in groups – meetings for example.  A good example of Emotional Intelligence is being happy for a newly promoted colleague as opposed to being outwardly bitter – or at least not openly showing your disappointment and letting it affect your performance.

Where does one learn soft skills?  We actually learn our soft skills from a multitude of places.  Here I will defer to Dr. Ralph G. Perrino’s essay titled, “The Socialization Process and Its Impact on Children and Learning”.  In his essay Dr. Perrino, a veteran educator, describes the most profound external forces on the development of children and teens all of which have lingering effects well into adulthood:

  • The family from which one’s “Ascribed” status is derived;
  • Attendances at a public school or an exclusive, elite private school;
  • The composition of peer groups;
  • Exposure to mass culture and media;
  • Involvement in voluntary groups and;
  • Religious affiliation/spirituality.

Soft skills can further be learned and improved through reading and formal trainings.  One of my favorite trainings offered through my job is the Seven Habits of Highly Effective People by Stephen Covey.  Soft skills can also be learned through in depth discussions with mentors – particularly those in leadership positions with years and years of experience leading others.  Lastly, Soft skills can be learned just by observing others.

I’ll close by going back to Mike Rowe’s question.  Is technology negatively impacting our soft skills?  I would say that it can.  In some instances, communication over email and or text-messaging can be easily misunderstood which is particularly detrimental when there are conflicts to be worked out.  Digitally you can’t look into someone’s eyes, see their body language, or gauge the dynamics of a group in real time.  These are all things for “Millenials” and subsequent generations to be aware of.  With the new technologies that captains of industry such as Elon Musk are working on, and with the coming of Artificial Intelligence, this is something to be very cognizant of for students, educators, employees and employers alike.

Thank you for taking the time to read this post. If you enjoyed this one, you might also enjoy:

We should’ve bought Facebook and Bitcoin stock: An investing and technology story
A look at STEM: Blockchain technology, a new way of conducting business and record keeping
A Cryptocurrency App Case Study
Why SEO really is the key to a successful online business
The Best Apps for Crypto Investment
Who will have the skills to benefit from Apple’s $350 billion investment?

If you’ve found value here and think it would benefit others, please share it and/or leave a comment. To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site. You can follow me on the Big Words Blog Site Facebook page, and Twitter at @BWArePowerful. Lastly, you can follow me on Instagram at @anwaryusef76. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.

A Black History month interview with Howard University’s Dr. Vernon Morris part two

This is the continuation of my Black History Month interview with Dr. Vernon Morris of Howard University’s Department of Chemistry and NOAA Center for Atmospheric Sciences (NCAS), originally published on the Examiner in February of 2016.  Not only is he a scientific peer, but he is also a hero of mine.  In addition to his duties at Howard University, he regularly takes his team out to the schools in the DC Public Schools system to conduct science demonstrations.  He is an example of regularly being visible, and working to fulfill the needs of students in the community.  In part one of the interview, we talked about his scientific path and his research.  In part two, we discussed his efforts to expose the students in the DC Public Schools to science.  Our discussion actually delves into some of the complexities and challenges of teaching science in the DC schools – only someone involved on the grassroots level would know and understand.

*  *  *

Anwar Dunbar:  At the 2015 Congressional Black Caucus Annual Legislative Conference there were numerous Science, Technology, Engineering and Mathematics (STEM) panels discussing what needs to be done to get African American kids involved in STEM.  You actually go out and do it on the grassroots level though.  You and Miles Holloman, you guys get the chemistry experiments and scientists together, and you go to the various schools in Washington, DC, which is very, very impressive and it’s very necessary.  How did you all get started doing the Community Science festivals?  Also, what was your motivation for doing so?

Vernon Morris:  We started in 2009 and part of our motivation is that we were seeing fewer and fewer students from Washington, DC who were coming to chemistry, or even coming to Howard and majoring in STEM at all.  Secondly, Miles is from DC. He grew up here and went to Dunbar High School and was thus familiar with the school systems close to campus.  I had become more and more familiar with the school systems and some of the deficiencies that needed addressing: retention in science, challenges to science education, and so it was really a response to the fact that our kids weren’t getting science.  They weren’t getting access to science mentors.  They weren’t getting access to why science is fun and it’s an exploratory kind of thing.  Even when I was young, while I didn’t get encouragement from the school, I was always encouraged to get out and explore nature.  I had telescopes.  I had microscopes.  I had computing machines and equipment that my father would buy.  There was no resource for science that I didn’t have access to in the house.  It’s just that when I went to school, I had teachers shuttle me to things like woodshop.

But here in DC, Howard is sitting right in the middle of the community and there wasn’t an effort that I could readily latch onto that was readily going into the community or to the schools and saying, “Here is a network of Ph.D.s and professionals in STEM, and now here is your resource for your teaching or for your classes.”  I couldn’t find anything, so I said let’s just start going out a little bit.  We can put together some experiments, and it will help both the undergraduate and the graduate students communicate science, and build some of that giving back mindset towards the community.  It has been sustained, which is great, and I think the students have picked up on it and really enjoy it.

AD:  So the kids at the schools you’re going to, they really enjoy it?

VM:  Yes, the kids really enjoy it in addition to the Howard undergraduate and graduate students.  I think we’re getting better at it as well.  At the most recent American Association for the Advancement of Science (AAAS science) Day, the coordinator actually came over to our booth, thanked us and told us that we were one of the favorite tables there.  I think we find things that are engaging and bring the science to the kids’ level.  And the community is important.  Its good to have those more polished events and venues to go to, but I think it’s equally, if not more important, to get out into the community because it not only brings experience and exposure to the kids, but we can also talk to the parents about how to support them, and I think that’s what is missed.

All of these diversity programs are great, but the parents and the schools are deficient, we know that.  One of the things I notice about our Caucasian and Asian counterparts is that their parents are heavily invested.  Even for me, without my parents encouragement, it was not going to happen.  And so one of the things we try to stress when we go out is that the parents come.  So before they drop off the kids, or when they’re standing around watching, we always have a student or someone talking to them saying, “Your child really likes this.  Do you know about this or that resource?  We’ve got these camps that they can come and apply to, some of which are free.”  We try to get information to their parents to support their kids, so that’s what the difference is going to be.  We’ve had STEM programs for the last 30 to 40 years, but the percentage of African Americans going into STEM hasn’t changed, and it’s because we haven’t engaged the parents.

AD:  So regarding the low participation in STEM in the DC schools, would that just be in Southeast DC?  And would you say that’s due to budgeting?  Is it an economic or a cultural issue when the parents aren’t really pushing their kids to be involved in or fostering that love for science?

VM:  I don’t think it’s cultural.  I think it’s socioeconomic.  I think you’d find a similar thing across all cultures if the economic stresses are great enough.  If the economic stresses are lower, parents have more time to go to the family science fairs or AAAS for two days.  There may be some cultural aspects, and I wouldn’t say that its limited to southeast, but we know which Wards have the majority African American populations, and we target those Wards preferentially.  The schools we know in those Wards tend to have the least parental engagement and that tends to be the case wherever schools are disadvantaged or challenged.  You find that the parents aren’t necessarily involved and making sure the standards are met.  I think cultural is too strong a way to say it.  I can’t accept that as an African American culture, we don’t expect the highest in educational standards.

AD:  Are the schools you go to receiving adequate resources from the school system?

VM:  I think it’s changed over the last couple of years.  Some of the schools have significant investments, while at other schools, there’s not enough.  There’s a big differential in who gets what in DC.  If you look at the overall budget in DC, people argue that it gets more money per student than a lot of other school districts that are performing better.  I think some of that is the culture of the school system and the dichotomy between the governance of the school systems in Washington, DC.  That’s always been vulcanized and it’s tough to enforce standards when the body who generates the standards has no authority over what goes into the schools.

There is a separate body that governs what goes into the schools.  The politics of the DC schools, Michelle Rhee and all of these education gurus, its seen as a big experiment to a lot of people and the investment in the child has not been there, from what I’ve seen until recently, and I think they’re trying to do some good things now.  The turf wars also create a lot of turnover of good people.  It’s tough because the charter school system has degraded the amount of money that goes into the public schools and most of the schools. Now the private schools actually have access to government funding for education in DC.  So you have rich kids who get additional resources, the best teachers and the smallest classroom sizes, at the expense of schools who really need novel solutions to improve education in general, but STEM education in particular.

Dunbar High School did not have a lab.  There was no teaching lab in Dunbar High School until they built the new school a couple of years ago.  You’ve got one of the more famous high schools in Washington DC, and they couldn’t possibly teach a lab in that school.  They couldn’t teach any biology or chemistry.

AD:  So when you say a turf war, are you referring to competing for dollars between public and private schools?

VM:  Typically, you’ll have a public school office and the state, but since DC is a district and not a state, you have two different offices; DC city public office and then you have another office to govern the schools, but it doesn’t make any sense.  You have two offices that are in charge of the public school system.  So the way that it was drawn up I think is that when the schools were failing, the federal government created another office that would then take over.  The authority of that office, however, never quite usurped the powers that the city already had in existence.  The money goes to this other office, so they get to implement programs, but they don’t have the authority to tell the teachers what they need to do.  That comes from the office that doesn’t have the money.

So you have this schism in managing the school system.  And because you have that infighting there, you have the charter schools that have edged their way in, insisting they’re a part of the school system and should get some of the money, and you have the private schools that have been able to make a similar argument, because charter schools are essentially private schools as well.  You have some very elite private schools in Washington DC (the International School for example), but I don’t know that they need the resources from the DC government.  At the same time, you’re shutting down historical schools in the District because there are so few kids left going to them.  The students get shuttled off to another school that gets over crowded as far as teaching goes.  It’s very nuanced here in DC.  It’s different than a state school system where you have counties and districts and where you have a well-defined hierarchy of management.  Here it’s split.  It’s bifurcated.

AD:  What advice would you give to young African American students who are interested in science, or those who have a curiosity about it, but are not sure that they can do it?

VM:  I would say this about a science career in general, it’s a very rewarding career.  I really enjoy what I do and I love coming to work every day.  It’s part exploration, mentoring and teaching, and writing and being creative.  It’s being quantitative and using both sides of your brain.  And you can give back to the community and the nation in a very unique way.  And I think there are so many opportunities in science.  People think, “I don’t want to do chemistry and I don’t want to sit in a lab and mix chemicals”, but there’s a whole world of stuff outside of the lab that you can do.  It’s the same thing for physics or mathematics, or biology.  It’s an area that if you study it, the world is open to you.

If you study science for example, you can become a writer, but if you study writing only, you won’t necessarily be able to become a scientist.  I think you have much greater opportunities if you study science and follow that pathway.  And I think the fulfillment is a wonderful thing for me.  I love what I do and couldn’t imagine doing anything else.  My advice would thus be: do not fear it, really engage it, and see where it can lead you.

AD:  Well Vernon, thanks a lot.  There were a lot of valuable nuggets that you shared and a lot of people will benefit from this.  Keep up the good work and I will definitely see you soon at one of your community science festivals.

VM:  Okay, that would great.  We’d love to have you come out and help out Anwar.

Thank you for taking the time to read this interview.  A special thank you is extended to Dr. Morris and NCAS for providing the pictures in this post.  As described earlier part one of this black history month interview with Dr. Vernon Morris was published in a separate post.  If you’ve found value here and think it would benefit others, please share it and or leave a comment. To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site. Lastly follow me at the Big Words Blog Site Facebook page, on Twitter at @BWArePowerful, and on Instagram at @anwaryusef76. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.

 

A Black History Month interview with Howard University’s Dr. Vernon Morris part one

I originally conducted this interview with Dr. Vernon Morris in February of 2016 and published it in both the Examiner and the Edvocate.  Not only is he a scientific peer, be he’s also a hero of mine.  In addition to his duties at Howard University’s Department of Chemistry and NOAA Center for Atmospheric Sciences (NCAS), he regularly takes his group out to the schools in the DC schools system to conduct science demonstrations.  He is an example of regularly being visible and helping to fulfill the needs of students in the community.

*  *  *

While Black History should be celebrated throughout the year and not just in February, the month provides the opportunity to not only recognize African Americans who have made significant contributions in the past, but also those who are presently making history.  As there are numerous African American scientists and innovators who are typically celebrated during Black History Month in Science (Technology, Engineering and Mathematics (STEM)), there are also quite few African American scientists in modern times that are worth recognizing.  One such scientist is Dr. Vernon Morris of Howard University.  On Feb. 16, in honor of Black History Month, Dr. Morris granted an interview to discuss his background, the path to his current career, and potential avenues for under-represented minorities to get involved in STEM.

Anwar Dunbar:  First Vernon, thank you for this opportunity to interview you.  My writings in February tend to focus on Black History Month.  There are African American scientists that we usually recognize such as George Washington Carver, Charles Drew, Mae Jemison and Percy Julian for example, but I realized that there are many African American scientists and innovators who are currently in the trenches expanding our scientific knowledge, and in your case making a difference in the community.  You’re doing great things in and out of the lab so I thought it would great to get your story out.  So with that, let’s get started.

Talk a little bit about your background.  Where are you from?

Vernon Morris:  I’m an Air Force brat so I don’t have a traditional home to claim, because I’ve lived in 14 different places growing up.  I finished high school in eastern Washington State; Spokane.  I’ve been living in Washington, DC longer than any other place, so this is my home now.

AD:  Now growing up, were there any scientists in your family who you were exposed to at an early age?  What got you interested in science?

VM:  No, I actually was not exposed at all.  I never had the chance to do science fairs or any of that stuff.  I think my first exposure to anyone who was in science was actually one of my mother’s friends, Carolyn Clay, who was an engineer from Rensselaer Polytechnic Institute (RPI).  I used to talk to her a little bit and she actually got me into an engineering camp late in my high school years.  After that time though, I wasn’t even thinking about going to college to be perfectly honest with you.  Both parents were in the Air Force.  For much of my later youth my mother was a teacher and then a principal.  Truthfully, the only post high school institution I was thinking about was the Air Force Academy because they had a good boxing program.  I loved boxing and I thought I was pretty good.  My decisions throughout most of high school revolved around how to pursue boxing.

As I said, my mother’s friend got her doctorate in chemical engineering from RPI.  She had to be one of the few at that time, and I think she was working at Hanford Research Labs in Richland, Washington, which was a nuclear facility.  She worked there so I would see her from time to time when she would come visit my mother.

I always did well in science, but there wasn’t much encouragement to actually do science.  I liked math a lot.  I liked any kind of science; physics, chemistry, biology, all of those, but I got more discouragement in school than encouragement.  So she was one of the first people to say, “You know, you’re good at this stuff, so think about doing it.”  So the opportunity arose to go to Seattle (University of Washington), a more populated part of the state, where the camp was held and to see that engineering was cool.  I actually linked up with one of my father’s friends (a Mason) who was a steam engineer at the camp.  I apprenticed with him the rest of the summer on different projects.  It was interesting to see how things are being built, and how to apply the science, but it didn’t really change my course.

I ended up going to visit some friends and relatives in Atlanta.  There I saw the Atlanta University (AU) complex a little bit later and frankly speaking, that had a greater influence on me.  I received scholarships to go to other places, and visited them, but they didn’t have the same appeal as the AU Center.  Seeing my father complete his Bachelor’s Degree toward the end of high school, really made an impression on me as well.

AD:  So you went to the famous AU Center.  Did you go to Clark-Atlanta, Morehouse, or Morris Brown?  Which one?

VM:  I went to Morehouse and I had not made up my mind on a major.  I was literally running around trying to find a job and ran into Henry McBay, who is a very distinguished scholar and mentor for a lot of folks who got their chemistry degrees at Morehouse; and he basically offered to buy my books and a calculator, and take care of my school supplies if I would major in chemistry.

AD:  Really?

VM:  Yes, and I didn’t have enough money to say no (laughing).  I said, “Sure, it’s no problem.”  He told me that I would have to major in math if I majored in chemistry so that I’d understand the upper level courses.  And that’s actually how I selected my major in math and chemistry.  It was through Henry McBay.  I was literally running to get to another part of the campus and it was oriented in such a way that the Chemistry Building was my cut through.  He happened to be in the hallway and I almost ran into him.  He literally told me to slow down and then asked me about where I was going, what I was trying to do, asked what my major was, and through that conversation I wound up choosing my major.

AD:  Had the two of you met before?  You must have made quite an impression on him for him to make that offer.

VM:  No, I had never met him before.  It was my first or second week at Morehouse, and he was curious about whether or not I liked Chemistry.  He also introduced me to another professor who actually became my mentor later and who gave me a research job, Mr. John Hall.

AD:  So you earned your Bachelor’s Degree from Morehouse.  Where did you go after Morehouse?

VM:  From Morehouse I went to Georgia-Tech.  My doctoral studies were in Atmospheric Sciences, with applications in physical chemistry, so I took a lot of courses in physical chemistry and all of the core courses in atmospheric sciences.  My thesis was a combination of theoretical and experimental investigations of inorganic chlorine oxides, and the chemistry of the stratosphere.  It involved the application of matrix isolation, infrared spectroscopy, some ultraviolet spectroscopy to look at short-lived intermediates, free radicals that form from low pressure and low temperature reactions.  I performed quantum chemical calculations to help interpret the experimental results.

AD:  And just briefly, what did you find?

VM:  We found that some low temperatures stabilize some novel free radical structures that are completely unstable in the gas phase, and influence some of the heterogeneous reactions, and some of the actual gas phase chemistry that showed depletion.  It was actually related to the stratospheric depletion of the ozone.  At that time the stratospheric ozone hole wasn’t a well-understood phenomenon and they were trying to figure out whether it was dynamic or if it was chemical, and it turned out to be a combination of both.  We looked at the chlorine oxides in particular, extensively, and then some of the nitrogen oxides and how they contributed to the ozone depletion.

AD:  Now one last question about your thesis; what got you interested in atmospheric sciences?

VM:  It was John Hall.  I was again in a quandary about what I wanted to do, but it was either go into chemical physics, which is what he had done, or go into a more applied field.  At that point the ozone hole and stratospheric depletion of ozone in general was a really big deal and there were a lot of open questions.  It just seemed like a really exciting way to take the math, the chemistry and the physics and go after these larger scale environmental problems that were presenting themselves.  A single discipline wasn’t enough to address them.  You had to come in with a very multidisciplinary background.  I liked physics.  I tried to triple major in physics, but I it would have taken too long to finish so I just minored in it, and majored in the other two.  I liked applying chemistry and physics, and I liked understanding the environment.

John Hall actually had a joint appointment between Georgia-Tech and Morehouse, and while he was encouraging me to go to UC-Berkley or to Harvard, or some of his alma maters, the opportunity to go to a different school and still work with him was appealing, and actually my first daughter was born before I graduated, so weighing the prospect of leaving and not being near her sort of factored into my decision.

Anwar Dunbar:  So at Howard University you interestingly go out to the ocean and conduct research there.  Just briefly, talk about your research.

Vernon Morris:  We’re working on a lot of stuff, but the work revolves around trying to get a better quantitative understanding of how atmospheric particulates influence the chemistry of the atmosphere and climate across multiple scales.  These are multiple spatio-temporal scales.  There are time scales because the lifetime of aerosols tends to be days to months, but their influence in the atmosphere tends to range from that time scale to much longer time scales as clouds change their optical properties; that influences radiative balance and seasonal fluctuations.  If you look at particle evolution, once an aerosol is formed and injected into the atmosphere from the ground layer, how does it influence and have these multiplying effects across larger spatial fields as it moves around the atmosphere, and through larger temporal scales as it effects something that has a multiple “follow on” effect?

The ship experimental cruises allow us to look at the transport of aerosols that are transmitted from Africa either from the Sahara Desert or as a result of burning biomass from “Slash and Burn” agriculture.  Particles get into the atmosphere and influence tropical cyclone development, and they influence acidification of the upper ocean. They also influence microbiological transfer, the transfer of microbes across hemispheres.  They influence cloud properties and precipitation properties downstream and food security.  So they have all of these implications that are much longer and much larger than a particular fire, or a particular dust storm.  You have to connect that with field observations, laboratory studies and with space-based observations as well.

AD:  My first time meeting you was here in DC at the 2012 National Organization of Chemists and Chemical Engineers (NOBCChE) annual conference where you won the Percy Julian Award for excellence in teaching.  Was that for your teaching activities at Howard, or was it for the community outreach that you do at various local schools?

VM:  I think it was for the combination of teaching and mentoring.  In fact, I think it was the Henry McBay award actually, though there was a separate award for Percy Julian.  That was very special for me because I was a McBay mentee.  I think it was a combination of teaching and producing students at the university, the outreach internationally, and then the outreach locally, the way we try to get science to the community; the underserved communities in particular.

AD:  I’m a pharmacologist, so my knowledge of all of the notable African American chemists is admittedly limited.

VM:  Percy Julian actually designed the chemistry building here on the Howard campus.  He designed this building, designed the labs, and then laid out everything and then, because of a personal dispute with the provost and the president at the time, actually left before the building was commissioned.

AD:  You know, Vernon, as you were talking just now, I was just reflecting on how important it is to know these things.  A couple of years ago a mentor who himself isn’t a scientist, but who saw that I was trying to develop my own writing and mentoring voice, gave me a copy of Forgotten Genius, the documentary about Percy Julian.  When I was I watching it, I couldn’t help but feel that Dr. Julian’s story would have been so valuable to know when I was going through my own doctoral studies.  I didn’t deal with the racism that he endured, but just the scientific process; so many experiments have to be done before you finally get to the ones that actually work and generate quality data.  That documentary conveyed the essence of science, and it took me a while to figure that all out while I was working on my own thesis.  It would have been so valuable to know beforehand.

VM:  We actually screened that film here.  We used to show it on a regular basis to our chemistry majors because it’s very eye opening and shows the commitment that you have to have, in addition to some of the resilience you have to have for things to work out.  That guy was brilliant.

AD:  Yes, and there is a whole culture to what we do as scientists, and the story conveyed that as well.

This interview will continue in part two of A Black History Month interview with Dr. Vernon Morris.  A special thank you is extended to Dr. Morris and Howard’s NCAS for providing the pictures in this post.  If you’ve found value here and think it would benefit others, please share it and or leave a comment. To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site. Lastly follow me at the Big Words Blog Site Facebook page,  on Twitter at @BWArePowerful, and on Instagram at @anwaryusef76. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.