A look at STEM: What is Regulatory Science?

The first principle of my blog is “Creating Ecosystems of Success”, and one of the main focuses of my blog is awareness of the Science, Technology, Engineering, and Mathematics (STEM) careers and fields. Up to this point I’ve written several posts discussing the ‘Biomedical Sciences’ which I’ve been trained in: Pharmacology, Toxicology, ADME/Drug Metabolism, and Inhalation Toxicology. In this post I want to discuss what “Regulatory Science” and “Regulatory Affairs” are – the scientific interface between the ‘Public’ and ‘Private’ sectors where the safety of commercial products sold to the general public are determined – a science not well understood by the general public despite its importance to our everyday lives – myself included initially.

“You can always go into ‘Regulatory’,” a classmate who I’ll refer to as Greg said, during graduate school at the University of Michigan. I was feeling the stress of working on my thesis project which consisted entirely of ‘Bench’ or ‘Basic’ scientific research, and lamenting that I wasn’t sure if I wanted to stay in academia once I finished my dissertation. Greg had worked in one of the bigger Pharmaceutical companies, and understood everything that comprised them. At the time I wanted a career with a ‘regular’ schedule which is something I’ll describe more in depth in my next blog post which will discuss the ‘Basic Sciences’. I, coincidentally, did start a career as a Regulatory Scientist by accident, depending on your belief system.

When giving my annual Toxicology lecture at SUNY Albany, I always tell the class that Regulatory Scientists are ‘Watch Dogs’ or ‘Gate Keepers’ who evaluate new products generated by the ‘Private Sector’ to make sure they are safe for the public. What types of products am I talking about? You can start with anything in and around your home, whether it be food products, pharmaceuticals, or industrial chemicals, air fresheners, household cleaners, paints, or cosmetics. These are just the chemicals which we consume, or are exposed to on a personal level. Another context is the environment. For every product generated, questions must be asked about what that product will do to wildlife, their unique ecosystems, lakes, oceans, the air, etc. Here think about coal and petroleum products as good examples.

The term ‘Regulatory’ is rooted in the ‘Regulations’ put in place by Federal and State governments – laws and statutes which dictate how and when the government should act in the general public’s best interests to ensure that the products they are being sold are safe. Going back to the previous paragraph, there are regulations for example for registering the following: crops and commodities, livestock and poultry, pharmaceuticals, medical devices, industrial chemicals, industrial materials and textiles, and energy products such as petroleum and coal. We’re very close to the use of ‘Nanomaterials’, so products that contain them are of particular interest now.

Here is a good place to think back to the 2016 Presidential election where the then candidate, Donald J. Trump, discussed the need to rollback excessive, costly and burdensome regulations put in place by the Obama administration to allow private businesses to grow and thrive. Having an understanding of Regulatory Science and Regulatory Affairs is the essence of that discussion because it takes resources to demonstrate the safety of products; otherwise it can cut into profits if their uses are restricted. Important questions to thus consider are: 1) is there such a thing as over-regulation; and 2) is there a happy balance between business and keeping the public and environment safe? Some food for thought.

Regulatory Scientists work in both Public and Private sectors. On both sides each must understand the Federal and State government laws and regulations. Scientists in the Private sector must understand the regulations and provide the government with the data it needs so that their companies can efficiently register their products. Scientists in the Public sector must understand the regulations to ensure that the companies trying to register their products are in compliance, so as to not cause injury to individuals in the general public and create subsequent litigation. While this post is about Regulatory Science, it’s also worth noting here that most of the private companies also have scientists working in the ‘Applied Sciences’ and ‘Research and Development’, which is where their new products come from – examples are the Food, Pharmaceutical, Biotech, and Crop-Science companies.

Where do Regulatory Scientists receive their training and what types of skills do they need? Most Regulatory Scientists receive their training in the ‘Basic Sciences’ at major research universities, such as the University of Michigan, where I received my training. This means that they first become trained in specific scientific areas of expertise – Pharmacology and Inhalation Toxicology in my case – and they then use those knowledge sets in the Regulatory world to make safety decisions. The same is true for the Applied Sciences where that expertise is used to create new products. As you can see these worlds are closely interrelated.

The four Biomedical Sciences I’ve discussed in detail – Pharmacology, Toxicology, ADME/Drug Metabolism and Inhalation Toxicology – are all basic sciences which translate to the Applied Science and Regulatory sciences. Scientists trained in these fields and others can either remain in academia, or take their skill sets into the Public or Private sectors. See my post entitled, “The transferrable skills from a doctoral degree in the basic sciences” to get a feel for what skills are necessary to work in the Regulatory Sector or Regulatory Affairs. Just briefly, a couple are of the skills are the ability to: 1) work on teams; 2) write; 3) plan; and 4) speak orally, as there are lots and lots of meetings.

There are typically two contexts for Regulatory Science – one which takes place in a classic laboratory setting, and the other which takes place in an office setting. In the lab setting, experiments are carried out to test products safety. In the government office setting, scientists interpret the results generated on specific products using the above-mentioned regulations and policies which each scientist has to learn when starting in the field. It’s worth noting here that science is constantly changing and evolving, and thus a challenge to working in the Regulatory sector in government settings is staying current on new and relevant scientific breakthroughs and methods. This can be done in any number of ways including attending national meetings, and participating in special ‘work groups’, for example.

A third context for Regulatory Science is consulting. Many scientists, after working in the Public or Private sectors, eventually opt to the start their own consulting companies. These consulting groups typically work with Private sector companies to get their products registered swiftly and efficiently, with the goal of keeping their costs as low as possible.

What do Regulatory Scientists make in terms of salary? That is in part dictated by one’s degree level, and whether the scientist works in the Public or Private sectors. Scientists in both sectors can start out making $70,000. Federal and State Regulatory Scientists are typically paid according to the ‘General Schedule’. While Regulatory Scientists in Private Industry are paid according to what that company determines the individual is worth, and the mutually agreed upon salary.

In closing, when you think about Regulatory Science, think globally. While the United States Government has numerous agencies to protect the general public – the EPA, FDA, USDA and the NRC to name a few – other countries around the world have them as well. And there are actually global partnerships and cooperatives amongst nations which are important when it comes to international trade and commerce, in addition to environmental protection. A career in Regulatory Science thus has the potential to touch not only the lives of those in your immediate circle, but also those in faraway places.

The next posts in this series will talk about what Basic Research and Science are, and then my personal journey towards becoming a Scientist. If you enjoyed this post you may also enjoy:

The transferrable skills from a doctoral degree in the basic sciences
A look at STEM: What is Inhalation Toxicology?
A look at STEM: What is Pharmacology?
A look at STEM: What is Toxicology?
A look at STEM: What is ADME/Drug Metabolism?
A look at STEM: Blockchain technology, a new way of conducting business and record keeping

If you’ve found value here and think it would benefit others, please share it and/or leave a comment. To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site. You can follow me on the Big Words Blog Site Facebook page, and Twitter at @BWArePowerful. Lastly, you can follow me on Instagram at @anwaryusef76. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.

Father’s Day 2018: Dad’s doctor and his lawyer, and a discussion on careers

Your brother is going to be my Doctor, and you’re going to be my Lawyer!”

Happy Father’s Day. My 2017 Father’s Day blog post talked about some of my father’s life and money lessons, and there were many. I wrote some more about us in my second essay submitted to A Voice For Men entitled: Two very well-behaved boys left to figure things out on their own: Reflections on growing up ‘Blue Pill’, which discussed how my brother and I had to figure out several aspects of manhood on our own. There weren’t a lot of men around growing up, and there were limitations in what we were taught by the men we did know.

For this 2018 post, I’m going to go in a different direction and will discuss what Dad wanted both me and my brother to be career-wise, versus what we actually became. This piece isn’t an “ode to fathers” per se, but instead a set of thoughts and ideas based upon something my father said to us as children, which will serve as a jumping off point for things me and those in my circle regularly discuss today as adults – things that have impacted our family dynamics as the years have gone by. As described in my piece Challenging stereotypes and misconceptions in academic achievement, Dad’s fatherly guidance helped me reach my academic potential. He also stimulated me to start thinking about potential careers at an early age.

* * *

“Your brother is going to be my Doctor, and you’re going to be my Lawyer!” Dad said on one of our summer visits in the mid-1980s. The three of us were crossing a street in downtown Schenectady, NY and he turned and gave his proclamation to the both of us – communicating with one of his hands – his signature style. Like many parents, Dad had his own plans for what we should be. Somewhere alo4ng the line, he determined that it should be a Medical Doctor and a Lawyer, and as with everything Dad said, he said it with lots of authority, pretty much commanding us.

Not having either in my immediate family circle on either my mother’s or father’s side, I didn’t know much about what lawyers did. I had some idea of what medical doctors did because I had gone to see them on numerous occasions as a child. One of Dad’s first cousins was in fact a medical doctor, but we didn’t see him enough to be able to ask him about his career. In elementary school it hadn’t occurred to me what I wanted to be career-wise, though I got the inkling that it would be something scientific after really enjoying “Life Science” in the seventh grade – essentially beginner’s Biology. My brother had begun showing signs of being both artistic and creative.

But what made my father so enamored with medical doctors and lawyers in terms of careers for his sons? Dad was always one for stability which is why he became a junior high science teacher. Neither of his parents had gone to college, so he was a first-generation college graduate. From what I can see, some parents naturally want their children to do better than them. In the mid-1980s, the conventional wisdom was that medicine and law were two very high-profile professions which would lead to affluent and comfortable careers/lifestyles.

“I know that your grandfather would be very proud of you being a doctor and all,” Dad said on several occasions regarding my Ph.D. years later. He didn’t necessarily understand what my doctorate stood for or the skills it represented, but the title of ‘Doctor’ meant a lot to him – something I witnessed in the coming years both positively and negatively. Coincidentally, I think he initially discouraged me from pursuing a doctorate – potentially because he only knew Ph.D.s in the context of the school system, and not the ‘Research’ and ‘Regulatory’ worlds.

With one of the principles of my blog being “Critical Thought”, I believe it’s important to look at things in their entirety. So, while Dad wanted these two prestigious careers for us, what would it have taken for us to get into these two professions? The answer is it would’ve taken lots and lots of school for the both us and then, most likely, considerable debt to pay back. This is something very important to consider for parents and students looking to attend college to pursue ‘White-Collar’ careers.

In terms of higher education, thinking out the entire plan long-term is critical – considering the cost of the degree, how to get a quality degree for the least amount of money possible, what the expected salary will be on back end, and finally how much debt will need to be paid back. According to a 2014 article in Forbes, the average amount of debt for Law School graduates ranged from $84,000 to $122,158. Also, according to a recent 2018 article by Credit Donkey, the average medical school graduate finishes with $192,000 of debt.

Keep in mind that these are on top of however much debt was accrued during one’s undergraduate studies. The numbers probably weren’t as high thirty years ago, but it’s important to be mindful of blindly chasing certain careers based upon titles and prestige. If it’s something a student really wants to do, that’s different, but the costs still ought to be considered.

If you run the numbers and your prospects aren’t good, I would recommend not going into debt for that particular degree. A mentor recently taught me that the economy actually dictates the need for specific careers at a given time. I don’t know what the prospects were like for lawyers in the mid-1980s when Dad announced his wish for me, but as I progressed in my education, I heard more and more stories about the market being ‘saturated’ with them. I likewise heard that the landscape for medicine had changed, and in some ways, it wasn’t as lucrative a career as it once was.

In terms of my career, I figured it out as I went along. I had an interest in the Biological Sciences and thus followed that path. I pondered going to Medical School at one point, but decided against it after a professor at Johnson C. Smith University encouraged me and some of my classmates to study up on what it entailed – the demands, the lifestyle, and the backend costs.

It’s also important for students and parents to keep in mind what the student is good at, and where their gift/passion lies. While I turned out to be the son that was interested in the Biology, my brother’s gifts were completely different. He turned out to be a ‘design and build’ –type of guy. He had the gift for designing things, constructing things, taking them apart, and he was quite formidable with tools and devices. He started studying Architecture in college but didn’t finish, but in hindsight, he may have also been well suited for one of the ‘Skill Trades’ – something that didn’t come up as a child as college and ‘White-Collar’ careers were emphasized as opposed to ‘Blue-Collar’ careers.

Speaking of the trades, since finishing my own education, I’ve realized that there is power in learning one or more of the skill trades. There will always be the need to build and fix things. That includes: the electricity and plumbing in your home, airplanes we travel on, the public transportation vehicles we ride to work on every day, and so much more. If your refrigerator breaks down as mine did recently, for example, you either have to buy a new one or hire someone to come and fix it – unless you can do it yourself.

Unfortunately, our society looks down on the Blue-Collar careers in some ways, though they pay very, very well and don’t require the schooling doctors and lawyers need – the same is true for the debt required to train for the latter two careers. In my opinion, individuals who are proficient in the trades people are willing to pay for; and those who also have some business training, stand to make lots of money as they can do things like start their own companies and hire other people.

My brother never finished college and has become a bit of an inventor/entrepreneur which actually is the route that our technology giants like: Bill Gates, Steve Jobs, and Mark Zuckerberg took. There may have been some luck involved for each of them, but these men are reminders that in some instances, ideas and skills are more powerful than the degrees themselves. Today for example, there are quite a few individuals making significant incomes without being ‘degreed’ – those who can write code for Blockchain Technology applications for example. Also, while my brother isn’t degreed, he’s also not saddled with a significant debt payment of any kind – a tremendous advantage.

As for me, depending on your belief system, I got lucky. I pursued a Ph.D. in a Science, Technology, Engineering and Mathematics (STEM) field at a time when the economy rewarded individuals with such degrees. What’s even more significant is that I finished only with a little bit of debt from my undergraduate studies. Because I pursued a STEM degree, I didn’t pay for any of my graduate studies so I didn’t have a hefty loan to pay back for those five to six years of graduate school. This brings me to my closing point. It wasn’t until I finished that phase of my science training that I realized that I was missing something very, very important – something some kids are given early, and something others stumble upon later in life if at all.

Regardless of whether or not you get a college degree, a trade or some sort of entrepreneurship, the critical piece is understanding money. Something not discussed much in our younger years was wealth-building – something that is possible for everyone, and independent of one’s career choice as it involves a specific set of behaviors that I’ve written about in my Net Worth and Debt Snowball pieces. Understanding the concepts of Wealth-Building: budgeting, living within one’s means, delaying gratification, investments, and ‘Compound Interest‘ – these are the keys to a great and bountiful life, not necessarily the careers and titles themselves, contrary to what many people think.

Prestige and titles are nice, but if you read Dr. Thomas Stanley’s The Millionaire Next Door, you’ll see that there are many high-income professionals who look the part, but who are actually struggling. In my blog post about the Tax Reform and Jobst Act, I referenced a 2016 article in the Washington Post entitled: The shocking number of Americans who can’t cover a $400 expense which showed that even some individuals making over six figures, surprisingly couldn’t cover such an emergency.

I never wanted to be one of those people. I may be different from most, but I’d rather secretly live nice and comfortable with a simple outward appearance, as opposed to looking wealthy and struggling behind closed doors. That’s a personal choice however – one which everyone must make for themselves.

* * *

In closing, our parents sometimes have dreams of what they want us to be. Some kids actually go ahead and fulfill their parents’ dreams while others go their own way. In some instances, our parents can discourage us from what we really want to do based upon what they know and feel from their lives.

There is thus a complex set of decisions to be made based upon: what one really wants to do, their unique gifts, what they’re passionate about, and how they’ll be able to earn a living on the back end. In the end, the economy dictates what’s needed at that particular time – it will determine who gets hired and how much they will be paid. Lastly, no matter what path is chosen, the critical piece is understanding money. Once again, Happy Father’s Day.

Thank you for taking the time out to read this blog post. If you enjoyed this post, you might also enjoy:

Two very well-behaved boys left to figure things out on their own: reflections on growing up ‘Blue Pill’
Father’s Day 2017: reflections on some of Dad’s money and life lessons
Mother’s Day 2018: Memories of my grandmothers
Mother’s Day 2017: one of my mother’s greatest gifts, getting engaged, and avoiding my own personal fiscal cliff
Challenging stereotypes and misconceptions in academic achievement
The benefits and challenges of using articulate speech

If you’ve found value here and think it would benefit others, please share it and or leave a comment. To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site. Lastly follow me on Twitter at @BWArePowerful, on Instagram at @anwaryusef76, and at the Big Words Blog Site Facebook page. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.

Tableau hosts discussion on educating in a data driven world revisited

Shortly before the Examiner closed its operations in 2016, I was invited to write a story on a symposium hosted by the company Tableau regarding the increasing role of data and analytics in education. During my doctoral and postdoctoral research in Pharmacology and Toxicology, I experienced firsthand the importance generating quality data and statistical analyses, though I didn’t realize that data and analytics was literally its own field. It turned out that there was a whole data and analytics community/world, with companies like Tableau creating software for quality data analyses and interpretation. Likewise there are whole careers in data and analytics, and these professionals are critical components of Academia, and the Public and Private Sectors.

* * *

On June 9, 2016 Tableau hosted a symposium in Washington DC titled; “Educating in a Data Driven World”. The symposium took place at Washington DC’s St. Regis Hotel and featured a panel of experts from the United States’ leading institutions of higher education. Among them were:

• Mike Galbreth, Associate Professor of Management Science, University of South Carolina
• Danial Lopresti, Professor and Chair of Departmen3t of Computer Science and Engineering, Director of Data X Initiative, Lehigh University
• Cheryl Phillips, Hearst Professional in Residence, Stanford University
• Vijay Khatri, Associate Professor of Information systems, Arthur M. Weimer Faculty Fellow, Co-Director, Kelley Institute for Business Analytics, Indiana University
• Jana Schaich Borg, Postdoctoral Associate, Duke University
• Jon Schwabish, Adjunct Professor in the McCourt School of Public Policy and the McDonough School of Business at Georgetown University, Lecturer at the Maryland Institute of College of Art

The Moderator of the panel discussion was Ben Jones, Director of Tableau Public. The panel discussion revolved around the state of analytics education and how higher education is responding to the increased demand for analytics skills in the workplace; a topic all in itself which impacts pretty much every sector and discipline; Politics, Humanities, Business and lastly Science, Technology, Engineering, and Mathematics (STEM) fields. Specific topics discussed were: Issues pertaining to data literacy, how students can be better educated to increase their data literacy, the importance of communication and soft skills for data professionals, and the common traits of individuals interested in analytics.

“Just like there are a lot of programs to help young girls get into STEM fields, we think that it’s important that we help educate our students to be successful in an increasingly data driven world. We have academic curricula for teachers to help them get started with Tableau in the classroom. We do whatever we can to help close the skills gap,” said Tableau for Teaching Manager Emma Trifari. Tableau’s motivation for hosting the panel was the understanding that there is a huge skills gap in the data world, and in order to fill that gap, data literacy needs to start from the beginning.

Tableau’s software is used to simplify data analysis. Currently enrolled students around the world are eligible to receive free one-year licenses of Tableau Desktop through Tableau for Students. Instructors and their students are also eligible to receive free licenses of Tableau Desktop through the Tableau for Teaching program.

For more information on Tableau’s Academic programs, go to: tableau.com/academic.

Thank you for taking the time to read this post. If you enjoyed this one, you might also enjoy:

We should’ve bough Facebook and Bitcoin Stock: An investing and technology story
A look at STEM: Blockchain technology, a new way of conducting business and record keeping
A Cryptocurrency App Case Study
Why SEO really is the key to a successful online business
The Best Apps for Crypto Investment
Who will have the skills to benefit from Apple’s $350 billion investment?

If you’ve found value here and think it would benefit others, please share it and/or leave a comment. To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site. You can follow me on the Big Words Blog Site Facebook page, and Twitter at @BWArePowerful. Lastly, you can follow me on Instagram at @anwaryusef76. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.

The transferrable skills from a doctoral degree in the basic sciences

I originally published this piece in The Edvocate in the summer of 2015 under a slightly different title. When I set out to earn my Ph.D. in Pharmacology, I wasn’t clear on what I was supposed to be getting from my doctoral research besides the degree itself, and hopefully a job at the end of it all. It turned out that in addition to the expertise gained in my thesis project, there were several other important skills that the University of Michigan’s Department of Pharmacology sought to instill in me and my classmates.

These skills – some of which took time and effort to learn are actually very critical in any of the “Biomedical” sciences that I’ve recently written about: Pharmacology, Toxicology, ADME/Drug Metabolism and Inhalation Toxicology, and others. They’re further critical in any of the ‘Basic’ research sciences.  All Ph.D.s are not the same, nor are all Ph.D. programs the same and you may have learned some or all of these skills in yours. The following piece discusses the transferrable skills scientists in the Basic research sciences receive during their training which are very valuable in: Academia, and both the Public and Private sectors.

* * *

July 8, 2015 marked the ten year anniversary of the earning of my Ph.D. (doctor of philosophy degree) in Pharmacology from the University of Michigan. It was a tremendous accomplishment educationally and scientifically for a kid from Buffalo’s eastside. Coming from my community, it had far reaching effects and implications socially that I didn’t understand at the time.

On June 2, 2015, the University of Michigan’s Department of Pharmacology hosted its annual Pharmacology and Experimental Therapeutics Career Day. The event was designed to expose the department’s current students, to the multiple career options available to them following their doctoral and masters level trainings. As a key component of the day, select alumni (myself included) were invited back and asked to discuss their careers and share their experiences.

Going back to Ann Arbor is always like going home. Six of my most of the most meaningful years were spent there learning about science and life. My graduate advisor for example taught me lasting lessons not only about pharmacological research, but also how to be a professional and how to survive in this world. In a lot of ways, he was like a second father.

While I experienced tremendous growth during graduate school earning my degree, some of the most meaningful lessons about my doctoral degree itself took place after leaving Ann Arbor. College towns like Ann Arbor are unique in that the University is a major part of the town’s culture, and as such there is an unusually high concentration of highly educated individuals there. Needless to say every place isn’t like that, and you don’t realize it until you leave.

Once I left, I discovered that my degree touched people in many different ways. I actually wrote a ten part series for the Examiner titled “Pursing a Ph.D”. One part of the series was dedicated to the social implications of the degree, specifically some of my biological father’s words of wisdom.

“I wouldn’t tell people that you’re a doctor when you first meet them. They’re going to expect you to have certain things and look a certain way.” Upon moving to Albany, NY for my Postdoctoral fellowship, my father gave me this stern recommendation. I didn’t understand why he was encouraging me to keep my great accomplishment a secret, but to make a long story short, he was afraid of other people’s expectations, and there was some validity to his fears.

Our society associates the title of doctor with wealth, no matter what kind of doctor the person is. The late Dr. Thomas Stanley, author of the Millionaire Next Door series discussed in his books that being a high-income professional, and the accumulation of wealth don’t directly correlate. Wealth building involves: sound money management skills, financial literacy, and in some cases delayed gratification – components that not all doctors have.

“I wasn’t aware of Dr. Dunbar’s level of education when I met him so I was unable to address him by his proper title,” said a teacher at a Career Day at a local elementary school in late May. I casually revealed to the class that I earned a Ph.D. but didn’t introduce myself as “Dr. Dunbar”. As best I could, I tried to humbly explain to her class of sixth graders that success, in this case earning a doctorate, is a door that swings both ways.

That is, some people will instinctually be happy for you, celebrate your success and look at you with reverence, while others will unfortunately feel threatened and insecure about it and behave as such. This can be relatives, friends, significant others, coworkers, etc. There are numerous stories I could tell about this both good and bad, but there isn’t enough room in this piece.

In any case let’s circle back to the University of Michigan’s Pharmacology and Experimental Therapeutics Career Day. What does having a doctorate in the basic sciences actually mean, and what does it actually empower one to do particularly in the sciences? As the lone government Regulatory Scientist at the Career Day, I interestingly drew the first time slot for the morning speakers.

I had no idea what my peers were going to talk about, but surprisingly most of our talks shared similar core themes. Each of us in our own way, communicated that in addition to becoming experts of our thesis projects, in my case the “Ubiquitination and Proteasomal Degradation of Neuronal Nitric Oxide Synthase”, there were a host of other skills that we had all learned that were applicable to our current careers and other areas, particularly the Public and Private sectors. Among them were:

• Critical thinking/Problem solving skills
• The ability to multi-task, organize and coordinate multiple projects at one time
• The ability to write clearly
• The ability to speak and present clearly
• The ability to work on teams
• The ability to adapt and understand new systems

My classmates had all gone on to do some very impressive things. Each of us worked on research projects in the areas of: Cardiovascular Pharmacology, Receptor Pharmacology, and Drug Metabolism, just to name a few. However after graduation, not everyone had taken the traditional path of becoming tenure-track academic researchers.

Some had gone on to: work in the pharmaceutical industry, start their own companies, become consultants, become academic professors or administrators (at small teaching colleges), or science advocates. Our varying careers spoke in part to our department’s openness to prepare its students for the potential for other careers, in addition to the versatility of the skills that we had acquired. See my Pharmacology blog post to get a feel for just how vast the field is.

In summary, earning any doctorate whether it be in the sciences or the humanities is a tremendous accomplishment. That being said, it’s what one does with the skills they’ve acquired during their thesis research that makes them great, not the degree itself. In the sciences, in addition to mastery of one’s area of expertise there a core set of skills learned. And it is these skills that make that person exceptional no matter which field they go into.

I’m going to end this differently than the original piece by saying that with a simple Google search, the publications I proudly generated during my research days I believe are all still available online for those curious individuals. Thank you for taking the time to read this blog post. If you enjoyed this post you may also enjoy:

A look at STEM: What is Inhalation Toxicology?
A look at STEM: What is Pharmacology?
A look at STEM: What is Toxicology?
A look at STEM: What is ADME/Drug Metabolism?
A look at STEM: Blockchain technology, a new way of conducting business and record keeping

If you’ve found value here and think it would benefit others, please share it and/or leave a comment. To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site. You can follow me on the Big Words Blog Site Facebook page, and Twitter at @BWArePowerful. Lastly, you can follow me on Instagram at @anwaryusef76. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.

A look at STEM: What is Inhalation Toxicology?

“While other bodily tissues can tolerate varying degrees of O2 deprivation, it is well understood that even short periods of deprivation of the brain can cause irreversible damage, unlike with long periods of food and water deprivation.”

With the exception of my Blockchain Technology post, my previous Science, Technology, Engineering and Mathematics (STEM) posts have covered the fields of: Pharmacology, Toxicology, and ADME/Drug Metabolism – all of which are considered ‘Biomedical’ sciences. Similar to those fields, Inhalation Toxicology as a discipline dates back to over a century ago, and is very complex regarding the wealth and depth of information available. It’s also still evolving today.

The goal of this post is not to address every detail and nuance of the field, but instead to give readers unfamiliar with it a basic introductory understanding of the discipline. This post was prepared for a general audience and thus any fellow Inhalation Toxicologists who may read this, may find it a little too simplistic. That’s okay though, as the goal is to educate others on our field and what we do. Further details about the many aspects of Inhalation Toxicology can be accessed online, or in scientific journals.

This overview of Inhalation Toxicology definitely falls under my principle of “Creating Ecosystems of Success” as it is a very unique knowledge and skill set possessed by only a select few – one of which I acquired accidentally when seeking training in ADME/Drug Metabolism as a ‘Postdoctoral’ scientist. Why is Inhalation Toxicology a unique skill set? I’ll start with a holistic discussion about the three routes of human exposure which will take us briefly into another biomedical discipline; ‘Anatomy and Physiology’, which deals exclusively with the organ systems within the human body, and how they collectively work together at the tissue and cellular levels.

My posts regarding Pharmacology, Toxicology, and ADME/Drug Metabolism focused on exposure to chemicals primarily through the oral route – ingestion through the mouth and then absorption into the ‘Gastrointestinal Tract’ (GI-Tract). While we typically think about the ingestion of chemicals through the oral route, the reality is that humans can be exposed to drugs and toxicants through two other routes; the dermal route by way of our skin, and the inhalation route by way of our ‘Respiratory Tracts’ – the region spanning from our nasal passage down into our lungs where gas exchange with the atmosphere occurs. Each route has its own unique properties anatomically which impact the potential absorption of chemicals into the body where they can exert their therapeutic or toxic effects at specific tissues.

Each route receives differing amounts of what’s called the ‘Cardiac Output’ or the blood delivered from the heart. On average, the GI-Tract receives 21%, the skin receives 9%, and the lungs receive 100% of the heart’s Cardiac Output. This makes sense as the function of the lungs is to facilitate gas exchange between our bodies and the Earth’s atmosphere.

The lung’s ‘Alveoli’ are critical for the body’s absorption of ‘Molecular Oxygen’ (O2) into the bloodstream. Once inhaled, the O2 in the air is very rapidly absorbed into the pulmonary capillaries from the alveolar spaces where it binds to the ‘Hemoglobin’ in our blood while the ‘Carbon Dioxide’ (CO2) releases into the alveolar spaces to be exhaled. This exchange of O2 and CO2 are both very rapid and efficient in healthy lungs – something our bodies do without us even thinking about it. What allows for this very efficient exchange of gases with the environment is a very, very thin 0.5 micron three-cell layer separating the alveolar spaces from our pulmonary capillaries.  These capillaries immediately receive and return blood to the heart for distribution to the body.

Without the continuous exchange of O2 and CO2 through our lung’s alveoli, our bodies could not function as O2 is a necessary substrate for our body’s many tissues at the cellular and molecular levels. This is important because while other bodily tissues can tolerate varying degrees of O2 deprivation, it is well understood that even short periods of deprivation of the brain can cause irreversible damage, unlike with long periods of food and water deprivation. For this reason alone, maintenance of proper respiratory function is critical. With that, I’ll transition into what Inhalation Toxicology is and why it’s important.

Inhalation Toxicology is the study of the harmful effects of chemicals on living systems through the inhalation route of exposure via breathing – typically as it applies to mammalian species. It’s a very important field as respiration is a critical biological process for mammals as described above, and thus any toxicant that compromises the body’s capacity to exchange O2 and CO2 with the environment is very dangerous.

Before I discuss the types of chemical agents that can cause injury through inhalation exposure, I’ll first describe the two types of effects that can result from exposure to inhalation toxicants; ‘Portal of Entry’ effects and ‘Systemic’ effects. A Portal of Entry (POE) effect is an effect produced in the tissue or organ of first contact with a chemical or toxicant. In this case it’s an effect where a toxicant causes damage starting from the nasal passage down into the multiple regions of the lung. There are multiple regions and cell-types along the respiratory tract – each with specific functions – all of which can be uniquely injured.

In laboratory settings described later, some POEs are instant when observing lab animals and manifest as ‘Clinical Signs’ which are visible. Irritation in the respiratory tract can trigger the ‘Paintal’ reflexes and ‘Bradypnea’ in rodents which are immediate changes in the breathing patterns of the animals through very sensitive nerve processes and receptors in respiratory tissues. Anyone who has worked in a research lab and has opened a bottle of concentrated Hydrochloric Acid outside of a fume hood appreciates how quickly irritation can occur, as it only takes seconds to feel the burning sensation in the nose followed by: coughing, watering eyes, shortness of breath, etc.

Other POE Effects are more time dependent and can take hours, days, or weeks to fully set in. Some are some are reversible, while others are irreversible. Prolonged exposure to some toxicants can cause ‘Inflammation’ in the lungs leading to ‘Pulmonary Fibrosis’ (formation of scar tissue) or the formation of ‘Pulmonary Edema’ – both of which compromise lung function and can eventually be fatal. ‘Asbestos’ poisoning causes injury through prolonged activation of the ‘Immune’ system in the lungs, damaging them over time as the Asbestos particles cannot be removed once inhaled.

Smoking cigarettes is a good example of people willingly injuring their lungs. The paper used to roll cigarettes and the ‘Tobacco’ inside them contain thousands upon thousands of compounds before the cigarette is even ignited. Once lit and those chemicals are ‘combusted’, they transform into numerous other chemicals – some of which are referred to as ‘Reactive Intermediates’ which themselves come into contact with the cells of the Respiratory Tract. Years and years of direct cigarette smoke inhalation can cause irreversible damage leading to diseases like Lung Cancer. There is also risk of lung injury from living in industrial areas where there is the potential to inhale combusted compounds and particulates from factory emissions.

Before moving on, I’ll add here that while many Inhalation Toxicologists consider the lung itself to be the most important part of the Respiratory Tract, recent science has shown that the Nasal Passage is also a toxicologically revelation tissue as it relates to inhalation exposure. It contains drug metabolizing enzymes similar to those described in my ADME/Drug Metabolism post.  The lungs do as well.  Some chemicals can thus damage these regions if inhaled for prolonged periods of time.

Systemic effects refer to injury/toxicity in other parts of the body beyond the Respiratory Tract. If a chemical/toxicant can efficiently pass through the lung’s alveoli as described earlier, it can enter the blood stream and into the body’s general circulation.  From there it can damage other organs as discussed in my Toxicology post. Medicinally, some therapeutics such as “Anesthetics” for surgeries are actually administered this way – Halothane is an example.

Two classic systemic inhalation toxicants are ‘Carbon Monoxide’ (CO) and ‘Hydrogen Cyanide’ (HCN) which I’ve hyperlinked in case you’re curious to learn more about how they work.  While CO poisoning has been associated with accidental deaths from tailpipe emissions in garages, HCN is a known potential chemical weapon which is particularly dangerous in enclosed spaces such as subway stations – something our intelligence agencies are very aware of.

These are just a few examples of toxicity through the inhalation route of exposure. There are many other chemicals and substances that can cause injury and in some cases therapeutic benefit through the inhalation route of exposure. Many industries and groups highly consider Inhalation Toxicology. They include:

The Chemical Industry: Pretty much any industrial chemical that’s generated has the potential for inhalation exposure depending on its ‘Physical-Chemical’ properties, and how it’s used. These include paints, pesticides, and disinfectants – any product that companies are looking to sell to the general public.
The Tobacco Industry: The Tobacco Industry has to have a firm understanding of what cigarette smoke does to its customers and bystanders inhaling ‘second hand’ smoke. They are thus very interested in the long-term effects of cigarette smoke inhalation.
Nanoparticles and Nanomaterials: We’re very early in the use of ‘Nanomaterials’, and there is a lot that is unknown regarding the toxicity of these particles – in this instance, when they’re inhaled.
National Defense: Our military and the ‘Defense’ sector very much care about Inhalation Toxicology as soldiers are sometimes sent into theaters of war where enemies use biological and/or chemical weapons. There are also unfortunate incidences where chemical weapons are unleashed on civilians such as the recent chemical attack in Syria where rescue officials believe the agent used was Chlorine gas.
The Pharmaceutical Industry and Medical Devices: Some medicines can and must be delivered through the inhalation route. A classic example is the use of ‘Albuterol’ for patients with Asthma, but there are numerous other examples such as when anesthetics and other treatments are given through inhalation exposure.
Public Health: Federal and State governments, academic researchers and private sector companies are always cognizant of how the general public is exposed and affected by any of the chemicals described above which invariably end up in the air, and can cause any number of disease states including Asthma, and in some cases Lung Cancer.

Having introduced the field in terms of background and context, I’ll now discuss some of its experimental and technical aspects using visuals provided by CH Technologies – a leading company in the manufacture of Inhalation Toxicology exposure systems. Inhalation Toxicologists and Scientists not only need an understanding of the biology of injury to the Respiratory Tract via inhalation exposure (examples described above), but they also need an understanding of how to properly create the experimental conditions to test for inhalation toxicity. It’s relatively straight forward to feed a test specimen the chemical of interest in food or water, or to apply it via the skin, but how do you administer it for inhalation exposure?

The answer is that the chemical must be administered as a ‘Gas’, an ‘Aerosol’, a ‘Dust’, or even a ‘Cigarette  Smoke‘ suspension in some instances. This involves some knowledge of Chemistry and Physics, as well as Mathematics and Statistics. A key aspect of any toxicological field is proving the concentration/dose tested and properly correlating it with the effects observed. Scientists must thus be able to verify their test atmospheres, and there are numerous ‘Analytical’ chemical methods for doing so.

Some chemicals readily exist in the ‘Gas Phase’ – that is they have what is referred to as a high ‘Vapor Pressure’ and are very ‘Volatile’. Some are liquids while others are solids. Mothballs are an example of a volatile substance – a solid which ‘Sublimes’ and converts directly into a vapor. They give off the unique odor most of us know from our grandparents’ closets, and are comprised of the chemical ‘Naphthalene’ which itself has a high vapor pressure. Other chemicals have low vapor pressures and are considered ‘Non-Volatile’ and must form aerosols to be inhaled – think of a mist from a spray bottle. ‘Dust’ suspensions can be generated as well for experiments. In some instances, generating inhalable suspensions are not feasible depending on the properties of the test material of interest.

While the test species for Inhalation Toxicology studies vary, the species of choice is typically rodents – rats and mice. In some instances guinea pigs and primates are used. Each of these species possess the same organs that humans possess for the most part, and are thus useful models for human exposure.  Scientists must be well trained in both caring for the test animals and also operating the highly specialized equipment used in these studies which I’ll cover next.

Testing a drug’s/chemical’s efficacy/toxicity through inhalation exposure requires the use of an ‘Exposure Chamber’ where an inhalable atmosphere of the test article is generated for inhalation exposure by the test subjects.  The accompanying picture shows a single level chamber with the accessory equipment used for measuring the chamber’s inner atmosphere using some of its ‘exposure ports’. Click on the image to enlarge it. Using the accessory equipment, the concentration of the test material in the chamber can be monitored by the scientists running the experiment, in addition to other important measurements including: O2, CO2, temperature and humidity to name a few.

To generate the chamber’s test atmosphere, most modern systems utilize an ‘Air-Pressure’ pump to create an in “inflow” into the exposure chamber, and a ‘Vacuum’ pump to create an “outflow” from the chamber – together creating a consistent supply of O2, and removal of CO2 for the test subjects. The accompanying diagram shows a complete inhalation exposure system designed to expose the test subjects to aerosols. Click the image to enlarge it. Whether gases, aerosols or dusts are generated, a supply-line for the test article is ligated into the air supply line feeding the exposure chamber, allowing for the control of the concentration within the chamber by the scientist – something that must be actively monitored throughout experiments.

Inhalation studies can use ‘Whole-Body’ chambers where the animal’s whole body is exposed, or ‘Nose- or Head-Only’ chambers which in some instances have become the preferred method due to their increased specificity to the respiratory tract. A potential drawback of using Whole-Body chambers is that test subjects – usually rodents in the process of grooming themselves can orally ingest the test material by licking their fur coats.  ‘Dead space’ within whole body chambers is also a drawback.  The accompanying picture shows how a rodent sits in a ‘Restraint‘ tube during exposure.  An important key to properly running inhalation exposure experiments, is making sure that animals are adequately acclimated to the tubes and are comfortable in them for extended periods of time.

The accompanying photograph shows a Nose-Only inhalation exposure chamber with all of its exposure ports occupied by the restraint tubes for rodent species. Click on the image to enlarge it.  The picture further shows how the number of animals exposed can be increased by stacking multiple chamber levels and increasing the total number of exposure ports.

Depending on the questions being asked in that particular experiment, exposures can range from: hours, to days, to weeks, to months and years. During and afterwards, any number of toxic or therapeutic biological responses can be measured including changes in: clinical signs, body weights, blood chemistry, clinical chemical parameters, and changes in organ weights and tissue microstructure (histopathology). Again, collectively these are a very technical set of experiments to run, and which require a very specific and unique skill set.

How can students get trained in Inhalation Toxicology? Beyond high school, students can major in Biology, Chemistry, or any of the Biomedical sciences as undergraduates where they can start receiving lab training if there are researchers at that particular university, or one close by. Further training can be obtained at the Masters or Ph.D. levels. Similar to Pharmacologists, Toxicologists and Drug Metabolism Scientists, Inhalation Toxicologists generally receive their training at major research universities.

As a sub-discipline of Toxicology, scientists looking to receive training in Inhalation Toxicology can have varying backgrounds in terms of degrees conferred. If an individual doesn’t initially train in an Inhalation Toxicology lab, they can work in these labs as Postdoctoral scientists or ‘Fellows’ with any of the Biomedical degrees, and even with ‘Medical’ and ‘Veterinary’ degrees. When I gained my training in Inhalation Toxicology, my Ph.D. was actually in Pharmacology.

Depending on the degree level earned and where the scientist is employed, Inhalation Toxicologists can earn starting salaries of $60,000-$70,000 and above. One of the themes of my posts in this series is there is a tremendous amount of flexibility and overlap in the Biomedical sciences. Upon receiving training in Inhalation Toxicology, scientists must then determine which sector they want to pursue – academia, the private or public sectors, or nontraditional careers. Scientists with this background also have the flexibility to combine their knowledge sets with other disciplines to go into a wide variety of areas in: pharmaceutical companies and biotechs, chemical companies, consulting, patent law and even starting their own companies and ‘Contract’ labs.

It’s worth reiterating something from my Toxicology blog post and that is there’s an effort currently underway called ‘Tox-21’ or ‘Toxicology for the 21st Century’. One of the goals for Tox-21 is to minimize animal usage. Currently, there are efforts to develop methods to test for inhalation toxicity using in vitro models and cell culture preparations simulating animal tissues. Students interested in this field will position themselves well by learning about some of these advances that are on the horizon.

Thank you for taking the time to read this post, and I hope I was able to shed some light onto what Inhalation Toxicology is as a field. Similar to the other disciplines I’ve discussed, Inhalation Toxicologists have their own professional societies and meetings. While the Society of Toxicology has subsections on Inhalation Toxicology, the field has two of its own professional societies and meetings; the American Thoracic Society, and the American Heart Association as the Heart is a major organ affected by the inhalation of toxins.

The next posts in this series will talk about what Regulatory Science is, and then my personal journey towards becoming a Scientist. If you enjoyed this post you may also enjoy:

A look at STEM: What is Pharmacology?
A look at STEM: What is Toxicology?
A look at STEM: What is ADME/Drug Metabolism?
A look at STEM: Blockchain technology, a new way of conducting business and record keeping

A special thank you is extended to my Postdoctoral Advisor and his lab for allowing me to learn and train in this exciting field. I also want to thank two other colleagues who will remain anonymous – very brilliant veteran Inhalation Toxicologists with vast experiences, who have continued to teach me about the field. Finally, I want to thank and acknowledge CH Technologies for graciously answering my many phone calls as a Postdoctoral Scientist when I was first learning how to use their inhalation systems; and also for graciously providing the diagrams and pictures of the inhalation exposure chambers, and systems used in this post.

If you’ve found value here and think it would benefit others, please share it and/or leave a comment. To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site. You can follow me on the Big Words Blog Site Facebook page, and Twitter at @BWArePowerful. Lastly, you can follow me on Instagram at @anwaryusef76. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.

Dr. Namandje Bumpus discusses her educational path, and her research career in Pharmacology

While black history should be celebrated throughout the year and not just in February, the month provides the opportunity to not only recognize African Americans who have made significant contributions in the past, but also those who are presently making history. As there are numerous African American scientists and innovators who are typically celebrated during black history month in Science, Technology, Engineering and Mathematics (STEM), there are also quite few African American scientists in modern times that are worth recognizing. One such scientist is Dr. Namandje Bumpus (pronounced Na-Mon-Jay), of The Johns Hopkins University. On Feb. 1, 2016, Dr. Bumpus granted an interview to discuss her background, the path to her current career, and potential avenues for under-represented minorities to get involved in STEM. I originally published this piece when I wrote for the Examiner, and two years later, I’m republishing here on my blog.

Anwar Dunbar: First Namandje, thank you for this opportunity to interview you. My writings in February tend to focus on Black History Month and as a scientist myself I want to shine the light on other African American scientists and innovators who are currently in the trenches expanding our scientific knowledge. Also being in the biological sciences versus the information technology and robotics fields, it’s not so obvious to the lay person what a pharmacologist is, so for all of these reasons I thought about you. With those things being said, let’s start.

Talk a little bit about your background. Where are you from? Were there any scientists in your family who you were exposed to at an early age? Were you always interested in science? If so, was it always biology or were you good at other parts of STEM, mathematics for example?

Namandje Bumpus: I was born in Philadelphia, but grew up in western Massachusetts. There were no scientists in my family. I had an uncle who spent some time working in a lab as an undergraduate student. He wasn’t a scientist, but he still talked to me about how he enjoyed working in the lab. Hearing about his experiences working in a lab was interesting to me. Early on I liked chemistry. My parents and others in my family started getting me chemistry sets when I was in elementary school because I started vocalizing that I thought science would be something interesting to do.

I worked through them (chemistry sets) and I really liked it, and when I was ten (pre-email), I actually wrote a letter to the American Chemical Society to ask about information for careers for chemists. They sent me back lots of brochures and a letter discussing things you could do with a chemistry background. That really got me even more excited just having all of that information and starting to dream about the things that I would do. So I was really more chemistry focused until high school when I finally took a physiology class, and then realized that I wanted to lean more towards biology and physiology.

AD: Talk briefly about your educational path. We overlapped at the University of Michigan’s Department of Pharmacology. How did you get there? What got you interested in research?

NB: I went to Occidental College, a small liberal arts college and did some research there. We didn’t have many labs so I was doing plant research and I really liked that, but I thought that I wanted to do something that was more directly related to human health and physiology, so I started researching certain fields to see what that would be. I came across Pharmacology and it was something that seemed interesting, so the summer after my junior year, I applied for summer research programs in Pharmacology so I could try it out.

Michigan had a summer program called the Charles H. Ross Program for African American undergraduates to come and work in the Pharmacology Department for a summer, so I applied for that and I got it. That summer before my senior year, I had a really great experience in the department in general. I worked in Dr. Richard Neubig’s lab, and they gave us a short course where I was introduced to the principals of Pharmacology. That really sold me on Pharmacology and since I also had such a great experience in the department, I became really interested in going to the University of Michigan for graduate school.

AD: Not a lot of people understand what doctoral training is like and what it entails. You chose the lab of Dr. Paul Hollenberg which was a Cytochrome-P450 lab and we will discuss that, but what was it like learning how to do research? For example, what was the question you were looking to answer through your thesis project?

NB: In my project I was specifically looking at how genetic variances and mutations that existed in the population could impact their ability to metabolically clear certain drugs that are used clinically. We focused on a drug used to treat depression called Buproprion, and we looked at an HIV drug called Efavirenz. So I was looking at how genetic mutations could affect clearance of the drugs, and how those genetic variances might impact different people having genetic differences in drug-drug interactions.

AD: So would that be in the area of Pharmacogenomics?

NB: Yes.

AD: So as a Postdoctoral scientist did you work on a similar project? Or did you go in a completely different direction?

NB: Yes, my postdoc was somewhat different. I was looking at how lipids and fatty acids are cleared and how we regulate that process. Specifically, I was trying to find which pathways in cells were responsible for the metabolism of fatty acids. In particular, we were interested in stress activated pathways and seeing how activation of these stress pathways impacted expression of Cytochrome P450s that were responsible for metabolism of lipids.

AD: So right now in your own lab, what are you all working on?

NB: Lots of different things. The major focus has still been P450s, but looking at two different areas. The first is seeing how P450s and their metabolites contribute to drug induced toxicities, and to see if there are ways we can mitigate toxicities. We’ve had a focus on drug usage through HIV. The other side of my lab has been helping in collaborative clinical teams to develop drugs for HIV prevention, and trying to figure out how people’s pharmacogenetic variances in drug metabolism can impact their therapeutic responses when they are taking drugs used for HIV prevention.

AD: Now just briefly, from your doctoral studies through your postdoc, were there skills that you had to develop or did you come ready to go with everything? What were your major learning points as you worked through your thesis and your postdoc?

NB: My postdoc was really different. The experimental tools that I learned during my dissertation didn’t really help with what I wanted to do in my postdoc. I wanted to learn something new. Obviously the thinking and knowing how to design experiments was translatable. In graduate school I was doing a lot of mass spectrometry, more chemical-type techniques, and more biochemistry and enzymology. In my postdoc I was doing more in vivo biology and physiology, so I was using mice for the first time. I had never worked with a whole animal before. So I had to do a lot of cell isolation experiments and injections, things I had never done before; so I really had to learn a lot of new techniques for my postdoc. Now in my lab its great because we’re able to combine all of that, so we do a lot of mass spectrometry, biochemical techniques, in vitro mechanistic stuff/enzymology, as well as a lot more whole animal work, and a lot more whole cell work, things that I picked up in my postdoc, and I was able to combine both skill sets to build my program.

AD: And you did your postdoc at?

NB: The Scripps Research Institute.

AD: Did you always have the leadership skills necessary to run a lab or did you have to learn them? Was it a work in progress?

NB: Yes, you always build on it and it’s still a work in progress. I think you don’t necessarily get trained for it in graduate school or as a postdoc, but I tried to participate in things that were extracurricular; the Association for Minority Scientists at Michigan, and in my postdoc I was a part of our postdoctoral association, so I tried to pick up leadership skills by being involved in those other groups; but even still you’re not prepared to run your own lab. You really learn it as you go; you try things to see how they work. You talk to senior colleagues to get their advice and potentially go back and try something else. You take mentorship or leadership classes which I’ve done too, but I think it’s always a work in progress.

AD: We’re almost done. For the lay person, what are Cytochrome P450s and why are they important?

NB: They are proteins expressed in our bodies in all tissues, but mostly in the liver. What they largely help us to do is clear foreign compounds from our bodies. So for instance, if you are taking a drug therapeutically, you take it orally and you swallow it, one of the first places it’s going to go is into your liver. Your liver doesn’t want it to hang around and be inside of your cells forever, so we have these proteins that will change (biotransform) these drugs structurally to make them something that can be removed from your cells and removed from your liver. Thus, P450s are proteins that help us to clear foreign compounds and molecules. Drugs are obviously a large percentage of the foreign compounds that we’re exposed to, so we call them drug metabolizing enzymes.

AD: All of us went different routes after leaving Michigan. Some landed in the private sector in big pharma or the chemical industry. Others like myself, went into the public sector on the regulatory side, and I think I’m one of the only ones from our department to do that. A large chunk of our graduates went into academia which requires a ton of skills: leadership skills, entrepreneurial skills, and teaching skills. It’s also a very competitive environment and I very much admire my peers, such as yourself, who went that route. What made you decide to go into academia as opposed to the private sector or some other track?

NB: I think academia is the only thing that really fits my personality. I really like interacting with and training students. I like having a really close relationship with them where they come and work in my lab for several years while they work on earning a Ph.D. I get to see them grow. It’s similar with postdoctoral fellows. They come to the lab for a couple of years and I help them try to get to the next stage in their career.

I really love the educational aspect of the training. Additionally, I really like the broader training environment. In addition to my associate professorship, I’m also associate dean in the area of education where I get to spend a lot of time with graduate students who aren’t in my lab. I work more broadly with other graduate students helping them decide which lab they should choose for their thesis, and what they want to do next with their career. I further help them identify training opportunities for careers that they might want outside of academia. I really enjoy education training so this is the place for me.

Also, I like that scientifically, if I can dream it I can do it. If we have something that I really want to test in my lab, we can find a way to do it and test it out. I like the autonomy and the ability to be that creative with our science as well, so I think it’s a really good fit for my personality and goals.

AD: Now lastly, what advice would you give to young African American girls or those who are curious about science, but not sure that they can do it, or parents who are reading this and want to expose their kids to science?

NB: I think first knowing that if it’s something you really want to do, then you can do it. I think what’s most important about being a scientist is the passion for it and the interest. It’s not about everyone thinking that you’re brilliant. It’s about being interested and being a curious person and organically interested in science. I think it depends on which stage you’re at. If you’re in elementary school, starting off like me getting chemistry sets and microscopes is a good start – getting kids the type of gifts that will stimulate their interest and curiosity in science. Make them see that they do have the ability to do experiments and explore things on their own, and I really think that can get them even more excited about it. Microscopes, chemistry sets, and telescopes, those are things you start with from five years old.

Often times there are summer camps. At Johns Hopkins we have summer programs for people, middle school students and high school students. At many different stages you can contact local universities and museums to see if they have summer camps for science that kids can go to and that can be helpful. A lot of schools including ours have high school programs. In ours you can spend the whole summer working on a project and I think that’s a great way to see if you like scientific research and really get excited about doing research; so I think there are a lot of opportunities. You just have look out for them. The best place to start is contacting local universities and museums. Most universities will have a community engagement program you can contact for opportunities.

AD: The last question, Namandje, involves something personal you shared with me. The science community recently suffered a great loss, someone who was a mentor to you. Would you like to say a few words in memory of this individual? From what I gather, this person was also a female African American scientist.

NB: Sure. Her name was Dr. Marion Sewer. She was a full professor at the University of California-San Diego, and a Pharmacologist as well. She worked on endocrinology and really did a lot to understand the endocrine system and how it impacts lipid metabolism.

She was just a very highly regarded scientist and she was also someone who cared a lot about outreach. She ran a lot of programs that were focused on diversity and giving opportunities for people in high school through undergraduate school, and really spent time with postdocs to make sure there were really opportunities for people of different backgrounds, including African Americans, particularly for African Americans to have exposure to science. She was someone who was a really great colleague, a really great scientist and someone who also, in a rare way, really cared about people, service, equity and inclusion in science. She really inspired me and helped me to get my first National Institutes of Health (NIH) grant by reviewing it for me several times. She was more senior and experienced, and I think a lot of us have that same story where she helped us get started because she was so generous with her time, so it was definitely a really big loss.

AD: Well thank you for this interview opportunity, Namandje, and your willingness to discuss your life and career. A lot of people will benefit from this.

NB: Thank you, Anwar.

Thank you for taking the time to read this interview. If you’ve found value here and think it would benefit others, please share it and or leave a comment. To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site. Lastly follow me on the Big Words Blog Site Facebook page, on Twitter at @BWArePowerful, and on Instagram at @anwaryusef76. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.

Dr. Quinn Capers, IV discusses his path, #BlackMenInMedicine, and the present landscape of medical education

One of the focuses of my blog is STEM (Science, Technology, Engineering and Mathematics), and my most central principle is “Creating Ecosystems of Success”. While we tend to think of clinical medicine as strictly a ‘Healthcare Profession’, its foundations are actually rooted in the ‘Basic Sciences’. I discovered Dr. Quinn Capers, IV on Twitter one day by chance and started following him when he was tweeting about medical education at “The Ohio State University”. The ‘hashtag’ he used in most of his tweets ‘#BlackMenInMedicine’ further piqued my curiosity. After seeing more tweets and pictures of himself and his medical students, I reached out to Dr. Capers, the Dean of Admissions of the Ohio University’s Medical School, and he agreed to do the following interview. In our interview which coincided with Black History Month, Dr. Capers discussed his own educational path, the ‘hashtag’ #BlackMenInMedicine, and the current landscape of medical education for prospective students.

Anwar Dunbar: Thank you for the opportunity to interview you Dr. Capers. I stumbled across one of your tweets one day which included the hashtag you often use; ‘#BlackMenInMedicine’. It caught my eye, in addition to the pipeline of black male doctors, you’re training there at Ohio State University. Even though you’re at The Ohio State University and I’m a University of Michigan alumnus, I thought interviewing you would be very beneficial to my audience as I’m a STEM practitioner and an advocate myself. Also even though we typically don’t think of medicine as a science, it very much is. With that, can you talk briefly about yourself? Where are you from? What got you interested in medicine?

Quinn Capers: Thank you for the honor of being interviewed Dr. Dunbar. Speaking of Black History Month, your last name reminds me of my high school in Dayton, Ohio. It’s named after our hometown hero; the first black poet who made a living with poetry, Paul Laurence Dunbar. I actually was born in Cleveland, Ohio and moved to Dayton when I was two or three years old which is where I grew up.

My answer to the question, ‘What do you want to be when you grow up?’ was always, ‘a Doctor,’ even as a toddler. I didn’t have any doctors in my family and to be honest, we didn’t see doctors regularly. It was only on an ‘as needed’ basis – i.e. if we were injured or got really sick. I’m not really sure where the thought came from, but I now assume God planted that seed in my heart and mind, as I truly feel I was ‘called’ to this profession.

AD: What is your family’s background?

QC: Though I was born and raised in Ohio, my parents and both sets of grandparents are from Talladega, Alabama. My parents moved to Cleveland, Ohio before I was born, and as stated earlier, we relocated to Dayton before my third birthday. My father is a retired police officer and my mother is a retired postal worker. They divorced when I was very young, and my mother raised my sister and myself. My sister and I were the first in our family to attend college.

AD: Are you the first medical doctor in your family? If not, who inspired you?

QC: Yes I am, but I have a cousin who was studying Pre-Med at the Tuskegee Institute when I was in elementary school. We spent many hours talking about our shared dream of being physicians, and she was always very loving and encouraging. She is now a successful Physician Assistant in New York City.

AD: Describe your educational path.

QC: I attended public schools in Dayton, Ohio on the city’s west side – the ‘black’ side of town. I was always enamored with Black History and read voraciously about black heroes. Because of this, I knew I wanted to attend a Historically Black College/University (HBCU). I wanted to be taught by professors that were making Black History and I wanted to be in the same buildings, on the same campus, walking the same path as so many of the black intellectuals, artists, and revolutionaries that I had read about.

I chose Howard University in Washington, DC for my undergraduate studies – one of the best decisions I made in my life. For medical school I returned to my home state to attend the Ohio State University College of Medicine. Since I had attended predominantly black schools from K-12 and then Howard, medical school was my first time stepping foot into a Predominantly White Educational Institution (PWI). People have asked me if being at a PWI after having been cradled in majority black institutions my whole life led to my feeling out of place, or ‘inferior’, or if it gave me an ‘impostor syndrome’. No, it was actually just the opposite. Because I had seen so much black excellence, I felt invincible. After medical school, my residency and fellowship training in internal medicine, cardiovascular diseases and interventional cardiology, took place at Emory University in Atlanta, Georgia.

AD: Were there any particular challenges for you on the road to becoming a medical doctor?

QC: There weren’t any big challenges that stand out other than the need to prioritize studying, not over partying, and delaying gratification. Many of my friends were enjoying being finished with school, buying their first car, first house, and essentially living their lives while I was still in school and/or training. But since the opportunity to work towards an MD was a dream come true for me, none of it seemed like an inordinate challenge.

AD: What is your medical specialty?

QC: I am an ‘Interventional Cardiologist’, which is a heart specialist who specializes in opening blocked arteries and repairing heart abnormalities or defects with ‘catheter-based’ approaches. We repair the heart by accessing the circulation through an artery in the arm or leg, and then threading tubes and high-tech catheters, balloons, stents, and lasers to the heart.

AD: If I recall correctly, former Vice-President Dick Cheney had a series of those procedures. How did you ascend to become the Dean of Admissions at the Ohio State University’s Medical School?

QC: After spending the first eight years of my career in a private cardiology practice, I missed teaching and the academic environment, so I sought a position at my medical school alma mater. In private practice, nearly 100% of a physician’s time is spent taking care of patients. In what we call ‘academic medicine’, doctors work at medical schools and university teaching hospitals and have three responsibilities: caring for patients, teaching medical students and young doctors, and performing research. I thus left private practice to go into academic medicine.

After a short period of time I won several teaching awards from the students. When the Associate Dean of Admissions position opened, a colleague encouraged me to apply for it. My initial response was, ‘No that isn’t a part of my plan,’ which was to impact healthcare and improve people’s lives as the best interventional cardiologist and medical educator I could be. After giving it some thought, I realized that overseeing the admissions process at one of the country’s largest medical schools would allow me to have an even greater impact on healthcare than direct patient care. So, I decided to apply for the position and the rest is history. Now I perform both roles – Interventional Cardiologist and Associate Dean of Admissions, allocating approximately half of my time to each role.

AD: Let’s go back to #BlackMenInMedicine? Where did the hashtag come from?

QC: There are many black male physicians on Twitter. One day in 2017 some of us were having an online discussion about the landmark 2015 Association of American Medical Colleges publication entitled Altering the Course: Black Males in Medicine, which details the current severe shortage of Black males entering the medical profession. According to this publication, there were fewer Black males applying to medical school in 2014 than in the late 1970s and the downward trend continues. This portends a severe lack of Black male physicians in the future.

We discussed strategies to combat this trend and collectively came up with the idea of an online campaign to flood social media with images of Black male physicians at work, at play, and simply living their lives. The primary goal is to be role models for and inspire young men (and anyone) to pursue medicine. Other goals include changing the narrative about Black males – i.e. that not all are ‘dangerous’, but that many are physicians saving lives and serving humanity. We also wanted to speak out about injustice in any form against any group. The name of the campaign is thus ‘#BlackMenInMedicine’.

AD: This is an optional question, but based upon today’s climate, have you gotten any pushback because it acknowledges just men and not women?

QC: Very little that has been openly stated, but we are sensitive to the fact that there are likely some who feel it’s divisive and not promoting unity. We think that it’s possible to promote Black men in medicine while supporting many other groups. Many of us also tweet using other hashtags that preceded #BlackMenInMedicine, such as #WomenInMedicine, #ILookLikeASurgeon (which promotes images of women in surgery), and others. We took this on because the low numbers of Black men in medicine, in academic medicine, in leadership roles, and amongst medical school applicants has reached a crisis. I should also point out that we, the original creators of this campaign, do not feel that use of the hashtag is proprietary. Anyone who wants to promote diversity in medicine, and particularly encourage Black men to pursue medicine, is welcome to use the hashtag. In fact, we encourage it.

AD: Are there particular programs at The Ohio State University for minority medical students?

QC: Yes. At the Ohio State University College of Medicine we believe that diversity drives excellence in healthcare, and we have several strategies to recruit and support diverse students and women. We’re proud to be leaders in educating women and underrepresented minority physicians. The last four entering classes have been predominantly women, and according to 2017-2018 AAMC statistics, OSU ranks sixth of nearly 150 medical schools for the number of enrolled black medical students. We also have a post baccalaureate program called ‘MEDPATH’ that is focused on increasing the number of underrepresented and/or disadvantaged students entering medical school.

AD: When I was an undergraduate at Johnson C. Smith University in the late-1990s, many of us pondered practicing medicine, but few of us understood what it took to get into medical school – something a particular professor reminded us of regularly. Aside from the necessary academic credentials, what are some of the personal qualities aspiring medical students need to be successful?

QC: Today, most medical schools judge applicants using the Association of American Medical College’s ‘holistic review’ framework, which recommends balancing the applicant’s: experiences, personal attributes, and academic metrics (MCAT and GPA) when making a decision about their candidacy. While the MCAT (Medical College Admissions Test) and GPA are self-explanatory, it’s important that aspiring physicians understand the importance that past experiences and personal attributes will play when your application is being reviewed. You will need to have a track record of compassionate community service, healthcare-related experience (shadowing or volunteering/working in a healthcare setting), leadership, and often research.

Regarding personal attributes, medical schools desire students who are: compassionate, collegial, curious, and who are self-directed learners. While the exact attributes and experiences may vary by school, medical school hopefuls need to ensure that their experience portfolio is full and that their recommenders can speak to the attributes mentioned. Often the difference between the applicant who gets accepted to medical school and the one who doesn’t is not their MCAT score or GPA, but more so a matter of which applicant had the better strategy. Gaining acceptance to medical school is very competitive and applicants should have a well-thought out strategy. Some examples of strategic questions that students should think through include:

• Will I take a “gap year”?
• If I plan to take the MCAT in spring of my junior year, when should I take Physics?
• Which leisure-time activity will demonstrate the attributes that medical schools seek?
• Should I apply before my MCAT scores return?
• If my undergraduate grades are low, should I plan on graduate school? If so, what discipline? MPH or Masters Degree in a biomedical science?

I consider it part of my mission to provide the answers to these questions to students as early in the pipeline as possible. We do this via our OSU College of Medicine website (https://medicine.osu.edu/admissions/md/tips-and-advice/pages/index.aspx), by speaking to students via webinars (https://www.youtube.com/watch?v=Q_7B3qUjuJs), and via social media.

AD: Describe the landscape today in terms of getting into medical school versus when you were aspiring to study medicine yourself.

QC: I applied to medical school in 1986. At that time, the weight of academic metrics was definitely more than 1/3 of a candidate’s application. Community service was almost ‘optional’ at that time. Academic achievement is still very important, and always will be when evaluating medical school applicants. However, it is very unlikely that a student will be accepted to medical school today without a record of compassionate community service and healthcare-related experience. Also, many medical school curricula employ both group-based learning and independent learning, so schools look for evidence of collegiality and self-directed learning to provide evidence that a student will be successful.

AD: Okay, Dr. Capers, that’s all I’ve got. Thank you again for this opportunity to interview you, and also for providing the pictures to go along with this interview. I understand that your time is very valuable. Perhaps we can do follow up interviews at some point. Do you have any other parting comments or thoughts?

QC: No. Thank you again for giving me this opportunity, Dr. Dunbar. I’d be delighted to do this again, or even to make it a recurring feature. Good luck to all of your readers!

Thank you for taking the time to read this interview. If you’ve found value here and think it would benefit others, please share it and or leave a comment. To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site. Lastly follow me on the Big Words Blog Site Facebook page, on Twitter at @BWArePowerful, and on Instagram at @anwaryusef76. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.

Perspectives of federal workers caught in the middle of the 2013 government shutdown revisited

The following piece was originally published on the Examiner back in October of 2013 during my very first government shutdown as a federal employee. It was followed by another piece which I also recently republished titled The myth of the stability of being a government employee revisited. Five years later after our most recent three-day government shutdown, and with another potential one on the way, I thought it would be appropriate to republish it.

The reality is that regardless of one’s position on something like the Deferred Action on Childhood Arrivals policy (DACA), there are many, many government employees who have bills to pay and can’t afford the uncertainty of having a prolonged break in their income. This piece captured some of the rumblings of those around me leading up to, and during the time we were sent home for two weeks. It turned out to be a paid vacation as we were reimbursed for those two weeks, and ‘Obamacare’ was eventually signed into law – at least for the time being.

* * *

By the time this article goes up, the 2013 government shutdown may be over, or it may still be in effect. No one knows except our elected officials. In the meantime, when writing up the piece about The myth of the stability of being a government employee, the idea recently came to me to capture some of the reactions and sentiments of friends and colleagues in the federal government before and during the shutdown. The following are samples of quotes and reactions to the shutdown from people in my circle.

“All we can tell you is to watch the news. We don’t know when this will be over,” our supervisors and managers told us leading up the shutdown and then on the day we when we went through our shutdown protocols. We all knew that the government shutdown might be coming months in advance so all of this wasn’t a big surprise, though leaving my workplace that last time not knowing when I would return was a sobering feeling.

“We got reimbursed back in 1995 after the Clinton-Gingrich shutdown, but it’s not guaranteed that we’ll get it this time. It’s actually not looking good,” a seasoned coworker said days before the shutdown with a look of fear on his face from potentially losing the pay. It was with good reason too as our bills would continue rolling in even as our paychecks froze.

Immediately after the shutdown went into effect, many federal employees took it hard. While many were worried about the financial pinch, many workers actually found fulfillment in their work, and were upset that they couldn’t work simply because of lack of agreement by our elected officials. Some even became skeptical about continuing to work for the federal government.

“This sucks,” a coworker text-messaged me the morning of Oct. 2, the day immediately after the start of the shutdown. In later messages over the course of the shutdown, his frustrations continued saying, “I’m going to keep my options open employment-wise. It’s just going to get more difficult in the government – more work, lower pay (furloughs), no promotions, on top of the usual politics.”

“When my federal job got shutdown, I knew that I was just go and spend time at my other jobs,” a friend who has his hand in a number of community service and other projects outside of work peacefully stated. While many federal workers were crushed about not being able to go to work, others saw it as opportunity to invest their time in other projects.

“We might get shutdown, but we’ll be back to work eventually. In the meantime, those who have savings will be okay, and those who don’t will scramble to find the money to buy a bag of potato chips. It’ll be okay.” Prior to the start of the government shutdown, some colleagues weren’t worried about it at all. An unconcerned seasoned coworker who was savvy about money and investing smiled and told talked with me about the shutdown in a very carefree way.

Some retired federal employees looked at the current situation with fond memories of previous shutdowns, and made observations about the spending habits of and mentalities of the younger generations of federal employees.

“We never worried about the government shutdowns. We just relaxed and enjoyed the time off,” a retired federal employee laughingly said at an alumni association executive board meeting I’m involved with. “We were a different generation though. We had money saved up and could thus survive. People in the younger generations don’t live like we did and are in real trouble right now. They’re going paycheck to paycheck.”

“I’m filing for unemployment,” a disgusted coworker said walking from the printer the day of the shutdown, when we had to go into the office and officially close down our work stations. He continued, “The director just sent this certificate to all of us. I recommend you print it off and do the same thing.”

About a week later, my unemployment papers were put in the mail as well. Other federal employees congregated around the city to take advantage of the free specials offered by local restaurants.   We all watched the news everyday wondering when our elected officials would make some sort of agreement and reopen the federal government.

Thank you for taking the time to read this blog post. In you enjoyed this post you might also enjoy:

If you’ve found value here and think it would benefit others, please share it and or leave a comment. To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site. Lastly follow me at the Big Words Blog Site Facebook page, on Twitter at @BWArePowerful, and on Instagram at @anwaryusef76. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.

The myth of the stability of being a government employee revisited

“For those of us who are in the military, contractors and government employees living paycheck to paycheck yet who are still Democrats, to be honest, we NEEDED them to cave. Republicans don’t want the big gov’t anyway. They don’t care if it fails. We need our jobs.”

The following piece was originally published on the Examiner back in October of 2013 during my very first government shutdown early in my federal career. Five years later after our most recent three-day government shutdown, and with another one potentially on the way, I thought it would be appropriate to republish this. The opening quote is from a thread on Twitter. Someone took a verbal shot at Senator Chuck Schumer for caving in and ending the shutdown after only three days, and a federal employee responded saying that she needed Schumer and the Democrats to surrender. The reality is that regardless of one’s position on something like the Deferred Action on Childhood Arrivals policy (DACA), there are many, many government employees who have bills to pay and can’t afford the uncertainty of having a prolonged break in their income. When government shutdowns occur, we see that there are instances when federal careers are not as stable as we believe them to be.

* * *

Recently many of my articles have focused on financial literacy. One of the key components of financial literacy is the knowledge of how to generate income whether it be through working a job, entrepreneurship, or wise investment of money already earned. With the government shutdown taking place, quite a few federal employees have been forced to ponder one of the key considerations of working a job; security.

“When we were in college, the government was thought to be the place to be in terms of employment. A lot of people wanted to get in,” a close friend who is also a federal employee and a mother of two with a third on the way said when recently over lunch. “Now things are really different and there is so much uncertainty. People are rethinking whether or not they want to go in or even stay in the government.”

In a booming economy with plentiful tax revenues, a robust Gross Domestic Product (GDP), and when our elected officials are getting along, yes being a federal employee can be a good way to go, so much so that some would say that government employees are treated too well. Prior to 2008, it was thought to be stable employment and federal employees were thought to be relatively safe from the ups and downs of our nation’s economy. On a side note, it has also been said that it’s hard to fire federal employees, and that there are some in our ranks who have lost their desire to produce and are getting paid to do nothing. In that regard maybe some federal employees are treated too well.

When the country is in a recession and our elected officials can’t agree on how to best fund the government, or even to fund it at all, being a federal employee can look a lot less attractive. It is then that you (as have many) realize that you are still at the mercy of someone else; in this case our politicians who interestingly continue to get paid no matter what.
My tenure as a federal employee started in 2008 at the end of George W. Bush’s second term just as the current economic downturn ramped up (the Great Recession).

Though having a steady income while other sectors of the economy were disintegrating around us, federal employees have experienced/ endured:

• A freeze of our annual Cost of Living Adjustment (COLA);
• The uncertainty of ‘Continuing Resolutions’ instead having concrete budgets;
• The 2011 standoff over the raising of the ‘Debt Ceiling’ and the ‘Fiscal Cliff’;
• The 2013 summer ‘Sequestration’ leading to furloughs and;
• Now the 2013 shutdown over ‘Obamacare’ and a potential second showdown over the raising of the Debt Ceiling compliments of the Tea Party.

This series of unfortunate events has shown that federal employees are just as vulnerable to the same economic calamities as everyone else when perfect storms like the one that we’re currently in sets in. It has shown that federal employees are at the mercy of quarreling elected officials. These events have in fact shown that whether you’re employed by the private sector, the government, or an entrepreneur, everyone is vulnerable to something. Lastly though it hasn’t taken place during my tenure, there is also something call a Reduction in Force (RIF) in the government where the size of the workforce needs to be reduced, and federal employees are retained or let go based upon seniority and experience.

No matter what sector of employment or business you’re in, it is once again important to not live ‘paycheck to paycheck’ if you can help it, and to have some money saved up for unforeseen hardships such as this 2013 government shutdown. In his Financial Peace University course, Dave Ramsey calls that having an ‘Emergency Fund‘, or a ‘GOK’ (God Only Knows) fund.

Thank you for taking the time to read this blog post. In you enjoyed this post you might also enjoy:

Who will benefit from Apple’s $350 billion investment?
Challenge stereotypes and misconceptions on household income and wealth building
We should’ve bought Facebook and Bitcoin stock: An investing story
Mother’s Day 2017: one of my mother’s greatest gifts, getting engaged, and avoiding my own personal fiscal cliff
Your net worth, your gross salary and what they mean
The difference between being cheap and frugal

If you’ve found value here and think it would benefit others, please share it and or leave a comment. To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site. Lastly follow me on the Big Words Blog Site Facebook page, on Twitter at @BWArePowerful, and on Instagram at @anwaryusef76. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.

Who will have the skills to benefit from Apple’s $350 billion investment?

Two of the principles of my blog are “Creating Ecosystems of Success” and “Long-Term Thought”. While my scientific background is in the biomedical sciences Pharmacology and Toxicology, it’s imperative for me to keep my eyes on what’s happening in the other Science, Technology, Engineering and Mathematics (STEM)-fields. This allows me to use my platform to help guide others career-wise, and also for investment purposes (see my Facebook and Bitcoin post). In this post I want to discuss both STEM and careers, and the impacts of the new tax bill on the ‘Tech’ sector, as well as others.

My goal is to keep this post short. I actually have another post in the works regarding the new controversial ‘Tax Reform and Jobs Act’, but a recent development involving the company Apple prompted me to craft of this piece. I’ll start with a recent purchase involving one of the other ‘Four Horseman of Technology Stocks’, Amazon. Shortly after the holiday season, I ordered a copy of economist Dr. Thomas Sowell’s “Trickle Down” Theory and “Tax Cuts For The Rich”. I didn’t buy the book strictly because the Tax Cuts and Jobs Act was recently signed into law, but because I had an Amazon gift card and thought it would be an educational read. I’m also admittedly one of Dr. Sowell’s biggest fans as he embodies most of the principles of my blog. He empowers his readers with the economic laws and theories, and historical facts to interpret current events, government policies and political discussions with a more complete perspective, independent of your political affiliation or background.

The very short book discusses the famous ‘Trickle Down Theory’ which is a hotly debated topic among economists, media pundits, and politicians. Coincidentally, according to Dr. Sowell, it isn’t a formal economic law and never has been. Instead it is a term used to demonize any cutting of taxes which have historically sparked economic growth in our country, as opposed being a means of making the rich richer and ignoring the needs of those on ‘Main Street’ – the way tax cuts are typically depicted by their opposition. As expected, leading up to its passing, the Tax Reform and Jobs Act was accused of solely being a tax break for the wealthy by its opposition. Recently however, numerous sources are now reporting that it’s actually going to benefit people on Main Street as well. But what will the new law do for the national economy itself on a macro level? On January 17, 2018, Yahoo published an article titled Apple says it will invest $350 billion and hire 20,000 workers in the U.S. over the next five years.

While this is an opportunity for some to boast to the opposition that they had the bill all wrong, my focus is on who will benefit from Apple’s repatriation of its earnings, and its $350 billion investment in the United States. It seems to me that those who are trained in the technologies Apple is working on, and currently has in its pipeline, stand to benefit significantly in terms of career, earning potential, and upward mobility. Those skills may involve things like writing applications for ‘Blockchain Technology’, and/or ‘Quantum’ computers among others. Those who are not trained in those areas will only benefit from the products Apple produces, for the most part, solely as consumers.

As a STEM professional and advocate myself, this is a very appropriate time to discuss some data I recently found published by US News & World Report in 2016 titled Report: Black Students Underrepresented in High-Paying STEM Majors. The article cited data from a Georgetown University Study titled African Americans: Colleges Majors and Earnings, which discussed how black students tend to cluster in fields like social work leading to lower paying careers. The data in the Georgetown study showed that 20% of degree holders in human services and community organizing were black, and earned a median salary of about $40,000 per year. By contrast, only 7% of degree holders who received STEM-related bachelor’s degrees, and earned a median annual salary of $84,000 or more, were black – a very low number considering that blacks are only 12% of the total population in the United States.

This low percentage of participation in STEM, in addition to Apple’s repatriation of earnings, and its investment back into the United States, underscores the importance of having the necessary skill sets at critical times to take advantage of environmental changes imposed by laws like the Tax Reform and Jobs Act. Malcolm Gladwell covered this phenomenon extensively in Outliers. Right now in the United States there is considerable debate about discrepancies in wages based upon race and sex. The question has to be asked though, do those discrepancies exist due to discrimination, or is it majors chosen leading to the acquisition of skill sets for which there is high or low demand from the economy at that particular time? Are we essentially running up against the ‘Law of Supply and Demand’ as we often do? After all, the economy typically dictates what’s needed at a given time, and how much individuals in the workforce should be compensated.

How many more companies will return to the U.S. to repatriate their earnings, invest in research and development here in the U.S., and subsequently hire U.S. workers? Right now it’s unknown. But if other technology giants like Apple return, clearly some groups of people will benefit more than others. The question is will the beneficiaries strictly be based upon to race, sex and class, or will the skill sets possessed by certain well positioned individuals have something do with it? And who will possess those necessary skills once there is an increased demand for them?

Thank you for taking the time to read this post. If you enjoyed it, you might also enjoy:

A look at STEM: What is Pharmacology?
A look at STEM: What is Toxicology?
A look at STEM: What is ADME/Drug Metabolism?
A look at STEM: Blockchain Technology, a new way of conducting business and record keeping
• Challenging misconceptions and stereotypes in class, household income, wealth and privilege
Your net worth, your gross salary and what they mean

If you’ve found value here and think it would benefit others, please share it and or leave a comment. To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site. Lastly follow me on the Big Words Blog Site Facebook page, on  Twitter at @BWArePowerful, and on Instagram at @anwaryusef76. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.