Who will have the skills to benefit from Apple’s $350 billion investment?

Two of the principles of my blog are “Creating Ecosystems of Success” and “Long-Term Thought”. While my scientific background is in the biomedical sciences Pharmacology and Toxicology, it’s imperative for me to keep my eyes on what’s happening in the other Science, Technology, Engineering and Mathematics (STEM)-fields. This allows me to use my platform to help guide others career-wise, and also for investment purposes (see my Facebook and Bitcoin post). In this post I want to discuss both STEM and careers, and the impacts of the new tax bill on the ‘Tech’ sector, as well as others.

My goal is to keep this post short. I actually have another post in the works regarding the new controversial ‘Tax Reform and Jobs Act’, but a recent development involving the company Apple prompted me to craft of this piece. I’ll start with a recent purchase involving one of the other ‘Four Horseman of Technology Stocks’, Amazon. Shortly after the holiday season, I ordered a copy of economist Dr. Thomas Sowell’s “Trickle Down” Theory and “Tax Cuts For The Rich”. I didn’t buy the book strictly because the Tax Cuts and Jobs Act was recently signed into law, but because I had an Amazon gift card and thought it would be an educational read. I’m also admittedly one of Dr. Sowell’s biggest fans as he embodies most of the principles of my blog. He empowers his readers with the economic laws and theories, and historical facts to interpret current events, government policies and political discussions with a more complete perspective, independent of your political affiliation or background.

The very short book discusses the famous ‘Trickle Down Theory’ which is a hotly debated topic among economists, media pundits, and politicians. Coincidentally, according to Dr. Sowell, it isn’t a formal economic law and never has been. Instead it is a term used to demonize any cutting of taxes which have historically sparked economic growth in our country, as opposed being a means of making the rich richer and ignoring the needs of those on ‘Main Street’ – the way tax cuts are typically depicted by their opposition. As expected, leading up to its passing, the Tax Reform and Jobs Act was accused of solely being a tax break for the wealthy by its opposition. Recently however, numerous sources are now reporting that it’s actually going to benefit people on Main Street as well. But what will the new law do for the national economy itself on a macro level? On January 17, 2018, Yahoo published an article titled Apple says it will invest $350 billion and hire 20,000 workers in the U.S. over the next five years.

While this is an opportunity for some to boast to the opposition that they had the bill all wrong, my focus is on who will benefit from Apple’s repatriation of its earnings, and its $350 billion investment in the United States. It seems to me that those who are trained in the technologies Apple is working on, and currently has in its pipeline, stand to benefit significantly in terms of career, earning potential, and upward mobility. Those skills may involve things like writing applications for ‘Blockchain Technology’, and/or ‘Quantum’ computers among others. Those who are not trained in those areas will only benefit from the products Apple produces, for the most part, solely as consumers.

As a STEM professional and advocate myself, this is a very appropriate time to discuss some data I recently found published by US News & World Report in 2016 titled Report: Black Students Underrepresented in High-Paying STEM Majors. The article cited data from a Georgetown University Study titled African Americans: Colleges Majors and Earnings, which discussed how black students tend to cluster in fields like social work leading to lower paying careers. The data in the Georgetown study showed that 20% of degree holders in human services and community organizing were black, and earned a median salary of about $40,000 per year. By contrast, only 7% of degree holders who received STEM-related bachelor’s degrees, and earned a median annual salary of $84,000 or more, were black – a very low number considering that blacks are only 12% of the total population in the United States.

This low percentage of participation in STEM, in addition to Apple’s repatriation of earnings, and its investment back into the United States, underscores the importance of having the necessary skill sets at critical times to take advantage of environmental changes imposed by laws like the Tax Reform and Jobs Act. Malcolm Gladwell covered this phenomenon extensively in Outliers. Right now in the United States there is considerable debate about discrepancies in wages based upon race and sex. The question has to be asked though, do those discrepancies exist due to discrimination, or is it majors chosen leading to the acquisition of skill sets for which there is high or low demand from the economy at that particular time? Are we essentially running up against the ‘Law of Supply and Demand’ as we often do? After all, the economy typically dictates what’s needed at a given time, and how much individuals in the workforce should be compensated.

How many more companies will return to the U.S. to repatriate their earnings, invest in research and development here in the U.S., and subsequently hire U.S. workers? Right now it’s unknown. But if other technology giants like Apple return, clearly some groups of people will benefit more than others. The question is will the beneficiaries strictly be based upon to race, sex and class, or will the skill sets possessed by certain well positioned individuals have something do with it? And who will possess those necessary skills once there is an increased demand for them?

Thank you for taking the time to read this post. If you enjoyed it, you might also enjoy:

A look at STEM: What is Pharmacology?
A look at STEM: What is Toxicology?
A look at STEM: What is ADME/Drug Metabolism?
A look at STEM: Blockchain Technology, a new way of conducting business and record keeping
• Challenging misconceptions and stereotypes in class, household income, wealth and privilege
Your net worth, your gross salary and what they mean

If you’ve found value here and think it would benefit others, please share it and or leave a comment. To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site. Lastly follow me on the Big Words Blog Site Facebook page, on  Twitter at @BWArePowerful, and on Instagram at @anwaryusef76. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.

A look at STEM: What is ADME/Drug Metabolism?

“If you swallow a pill and it simply sits in your stomach, and then passes out through your feces, it technically wasn’t absorbed into your body.”

The Science of Where Drugs Go

Similar to the fields of Pharmacology and Toxicology, ADME/Drug Metabolism is a well-established field dating back to the nineteenth century, and it is very complex with respect to the wealth and depth of information available.  It is still evolving today.  The goal of this post is not to address every detail of the field, but instead to give readers a basic introductory understanding of the discipline.  Further details about the many aspects of ADME/Drug Metabolism can be accessed online, or in scientific journals.

In my Pharmacology and Toxicology posts, I briefly discussed Pharmacokinetics, Toxicokinetics, and the Absorption, Distribution, Metabolism and Excretion (ADME) of drugs and other xenobiotics.  These areas collectively comprise the exciting field of “Drug Metabolism”.   Whenever a new drug or industrial chemical is produced, several key aspects of the chemical must be characterized; how much of it gets absorbed into the body, where it goes in the body, and how long it stays there.  The answers to these questions are collectively known as the molecule’s “ADME” profile, and a tremendous amount of work goes into this type of research.  It’s very critical information as it helps characterize the chemical’s subsequent pharmacological or toxicological effectiveness and properties.  As you read through this post keep a couple of key questions in mind.  How much of the molecule gets absorbed into the body?  Where does it go once absorbed?  How long does it stay in the body?  Is it transformed into something new?  How does it leave the body?

The Liver, Kidney and Small Intestine

Before walking through the ADME acronym in greater detail lets first talk about the three organs that impact a chemical’s ADME profile the most: the Liver, the Kidneys and the Small Intestine.  As described later in this post, other organs can impact a chemical’s ADME profile but these are the three major players.  I will try to explain these organs in the context of this post in the simplest way possible.

“If you take a pill and it simply sits in your stomach for a brief period of time, and then passes out through your feces, then it technically wasn’t absorbed into your body,” said the same professor from my Pharmacology post who distinguished the discipline of Pharmacology from Pharmacy.  This anecdote described how drugs and man-made industrial chemicals in the classic sense must be absorbed into the blood stream to actually have been absorbed into your body.  There are other ways a chemical can get into the body (inhalation and dermal exposures), but for this post I’m focusing only on oral absorption.

If absorbed in the small intestine, the molecule of interest then passes through the “Hepatic Portal Vein” into the liver where any number of things can happen to it (described in greater detail below).  After leaving the liver and entering the general circulation, the molecule is for the most part cleared through the kidneys via the urine, but in some cases it can be deposited back into the GI-Tract and leave the body through the feces.  Molecules can also be exhaled depending upon what they’re transformed into once absorbed.  Any molecule not absorbed by the small intestine leaves the body through the feces.

I can’t emphasize enough the importance of the liver and kidneys which both perform numerous critical functions in the body.  For this particular context, the normal function of both, are critical to the body’s handling of both endogenous and exogenous chemicals which is why physicians, nurses and pharmacists inquire about their function early on when patients are admitted for care in clinical settings. 

Breaking Down the Acronym

With that in mind, I’ll now break down the ADME acronym and why these skill sets are so valuable for scientists who gain an expertise in them:

  • Absorption: As described earlier, the “Absorption” aspect deals with how much of the chemical is absorbed into the body following oral ingestion, passage into the small intestine, the liver, and finally into the blood stream. The properties of the chemical itself can dictate how much of it is absorbed – particularly its size and for simplicity whether it’s charged (+ or -) or neutral.  As described in my Pharmacology post, pharmaceutical companies designate molecules as either “small” or “large”, and many large molecules can only be administered by injection into the bloodstream.  While there are several experiments that can help characterize a molecule’s oral absorption, “Pharmacokinetic” and “Biliary Excretion” studies (discussed below) are the most specific.  Just briefly, by treating animals (usually rodents) with radio-labelled compound, the amount of compound absorbed can be determined by quantifying the amount of radioactivity in the blood, urine and feces over time telling scientists how quickly the molecule was absorbed in addition to the amount absorbed and if these two metrics change with increasing dose.
  • Metabolism: Once in the body, molecules can undergo “Biotransformation” – that is, classes of proteins called “Enzymes” can transform the structure of a given molecule by breaking it down into multiple pieces or adding on new “Functional Groups”, altering its properties so that it’s more readily eliminated from the body (discussed below).  In some instances, this biotransformation turns the molecule into something toxic which can cause injury to the liver or other tissues in the body.  The Metabolism aspect of ADME, involves a separate discipline called “Enzymology” which focuses just on the enzymes themselves; their levels in cells (Protein Expression), the rates of their reactions (Kinetics), their structures, etc.  There are actually multiple classes of drug metabolizing enzymes but the most prevalent class at least as it relates to the liver, is the “Cytochrome-P450s”.  Pharmaceutical companies pay particular attention to this class of enzyme (and a host of others) as they greatly impact the “Bioavailability” of the drug.  The “First Pass Effect” or “First Pass Metabolism” occurs when a drug is significantly metabolized before it gets into the general circulation due to metabolism by liver enzymes.  Some of the clinical aspects of metabolism will be further discussed later in this post.  By the way, while Cytochrome P450s were classically associated with the liver, we now know that they are expressed throughout the human body as well as all plants and animals.
  • Distribution: Once in the body’s general circulation, the molecule can travel to many of the tissues of the body and can accumulate there for short- or long-periods of time depending upon the tissue and the properties of the molecule itself.  If the molecule is particularly non-polar (neutral), it can accumulate in fatty tissues or for pregnant females, it can partition into breast milk and be transfered to nursing offspring.  Molecules can also bind reversibly to blood plasma allowing for an increased internal dose.
  • Excretion: Excretion refers to how the molecule is eliminated from the body.  Typically the urine and the feces are measured to determine how the molecule is eliminated.  Detection in the urine indicates that the molecule was absorbed to some degree into the bloodstream as the kidneys filter out aqueous waste from the blood.  Poor kidney function can actually lead to a prolonged bioavailability and subsequent toxicity which is why clinicians always inquire about it as described earlier.  Not all of the absorbed chemical exits the body through the urine though.  It turns out that absorbed chemicals can empty out back into the GI-Tract from the liver via the bile and then be eliminated through the feces.
  • Drug Transport: This aspect doesn’t traditionally fall under the ADME acronym, but it’s an important field that is now being actively researched in academia and industry.  It deals with how cells may concentrate the chemical in tissues or remove the molecule from the target tissue before it can exert its function.
  • Pharmacogenomics/Toxicogenomics: These new and exciting fields look at the genetics unique to individuals to determine the best treatments and dosages for that individual. Genetic differences in levels in the drug metabolizing enzymes mentioned above can result in drastically different effects of treatment with a given dose of a drug depending on the individual.  The same is true for an individual’s reaction to a toxicant.

The Applications for ADME

So why is all of this important?  Whether in a hospital setting, a pharmacy, or in the chemical industry creating a new food additive, pesticide, or cosmetic, it’s important to have as clear an understanding as possible of where the molecule goes in the body and what its fate is following ingestion.  As described above, physicians, whether in general practice or in the emergency room, have to gauge a patient’s liver and kidney function as those two organs will dictate how long the pharmaceutical stays in circulation – again, its “Bioavailability”. 

Even a pharmaceutical designed to be therapeutically beneficial can be toxic if it remains in the body too long, if its levels exceed a certain dose level, if it’s transformed into something toxic, or if there is a drug-drug interaction.  “Drug-Drug Interactions” are typically the result of one drug causing an increased internal dose of another drug due to inhibiting or preventing metabolism by the enzymes described in the metabolism bullet above.  In graduate school we learned about the classic case of Terfenadine causing abnormal heart rhythms that could lead to death by increasing the amounts of circulating Erythromycin – both of these drug molecules normally work by with non-cardiac mechanisms. Terfenadine was removed from the market once it’s ability to cause this deadly drug-drug interaction was recognized.

Where ADME is Considered

Chemical, food and beverage, and pharmaceutical companies all have to know what happens to their molecules in the body for several reasons.  A drug can be highly effective at preventing cancer cells from multiplying in a laboratory setting in dishes and flasks, but unless it is readily absorbed in the intestines and can actually get to its target tissue in the body as its untransformed structure, it’s useless.  In some instances, a drug can get to its site of action, but the cells of that tissue can adapt and effectively expel the molecule before it gets a chance to exert its function as described earlier.  Pesticides which are sprayed on agricultural commodities often make it to our dinner tables in low levels where we do ingest them to some degree.

Another very important context for ADME/Drug Metabolism is actually “Food Safety” which is a key consideration for food and beverage companies like Pepsico and Quaker Oats.  As a matter of fact, at a family dinner earlier this year, a discussion of about Trisodium Phosphate (TSP), a preservative used in “Cap’n Crunch” cereal which had other industrial uses, caused a stir amongst my relatives.  I had to remind them that both the ADME and toxicity profiles of this preservative had already likely been characterized and cleared through extensive studies by the company and the Food and Drug Administration (FDA).

ADME Careers and Training

We’ve discussed what ADME/Drug Metabolism is, but where do these scientists work and where do they receive their training?  ADME/Drug Metabolism scientists work in Pharmaceutical and Chemical companies, and in government performing “Regulatory” functions (visited in an upcoming post).  They receive their training for the most part in academic settings in labs specializing in Pharmacology and Toxicology, both of which have ADME/Drug Metabolism as a major component.  There are some labs that strictly study one of the many aspects of ADME/Drug Metabolism but they are in the minority of the research groups in the biomedical sciences.

“Scientists with training in Drug Metabolism will almost never be with jobs,” said one of the professors in my graduate department at the University of Michigan.  While we know that there is no job that is 100% secure, this particular professor was stressing that ADME/Drug Metabolism scientists are critical parts of most companies.  The divisions of those companies responsible for these types of studies are typically titled Drug Metabolism and Pharmacokinetics (DMPK).  No matter what disease the company is interested in (Diabetes, Cancer, HIV, etc.), it is essential that they understand the chemical’s ADME/Drug Metabolism profile for their own purposes and when submitting packages for approval by the Food and Drug Administration and other regulatory agencies.  The same is true for chemical companies. Depending on the degree level earned and where the scientist is employed, ADME/Drug Metabolism scientists can earn starting salaries of $60,000-$70,000.

Technologies Used in ADME Experiments

There are numerous scientific tools and technologies that ADME/Drug Metabolism scientists use, but I’ll mention two of them briefly.  The first is the Mass Spectrometer also known as the “Mass-Spec”.  The accompanying picture shows a Mass-Spec.  Click on the image to enlarge it.  Mass-Specs are not used solely in ADME/Drug Metabolism studies, but they’re very important to the field because they can detect and identify molecules in whole blood, blood plasma, tissue samples, urine, and fecal samples at very, very low levels.  More importantly they can detect changes in the structure and identity of molecules once they have gone through the body and can help to predict a drug/industrial chemical’s efficacy or toxicity.

Technologies and methods are always changing and evolving but the Mass-Spec is currently a very important tool for ADME/Drug Metabolism.  Currently, Pharmacology and Toxicology scientists in industry are moving towards decreasing animal usage and towards more in vitro and in silico methods which are giving rise to the use of Physiologically Based Pharmacokinetic Models (PBPK) where the fate of molecules can be predicted using various constants and inputs into computational models.  We’re currently in the early era of these methods.

Professional Societies for ADME

If you are interested in learning more about the exciting field ADME/Drug Metabolism, I suggest that you visit the website of the American Society for Pharmacology and Experimental Therapeutics (ASPET).  You can then click on the link titled Education & Careers.  In the right hand column, there is a link titled About Pharmacology, that provides a great deal of interesting information.  Speaking of ASPET, all scientific disciplines have their own professional societies with annual meetings that are held in various cities (eg. Boston, San Francisco, Chicago, San Diego, Washington,etc.) every year, and where scientists gather to show their results and network.  The two major professional societies for ADME/Drug Metabolism scientists are ASPET, and the International Society for the Study of Xenobiotics (ISSX).

Thank you for taking the time to read this post, and I hope I was able to shed some light onto what ADME/Drug Metabolism is as a field.  The next post in this series will discuss the field of Inhalation Toxicology.  If you enjoyed this post, you may also enjoy:

A look at STEM: What is Pharmacology?
A look at STEM: What is Toxicology?
A look at STEM: What is Inhalation Toxicology?
A look at STEM: Blockchain technology, a new a conducting business and record keeping

A special thank you is extended to Dr. Paul Hollenberg and Dr. Chester Rodriguez for their contributions to this post.  I also want to acknowledge Dr. Yoichi Osawa of the University of Michigan’s Department of Pharmacology for the picture of the Mass Spectrometer used in this post.

The Big Words LLC Newsletter

For the next phase of my writing journey, I’m starting a monthly newsletter for my writing and video content creation company, the Big Words LLC. In it, I plan to share inspirational words, pieces from this blog and my writers blog, and select videos from my four YouTube channels. Finally, I will share updates for my book project The Engineers: A Western New York Basketball Story. Your personal information and privacy will be protected. Click this link and register using the sign-up button at the bottom of the announcement. If there is some issue signing up using the link provided, you can also email me at bwllcnl@gmail.com . Best Regards.

An Interview With Dr. Vernon Morris Regarding The Atmospheric Sciences And STEM Education Part Two

This is the continuation of my Black History Month interview with Dr. Vernon Morris of Howard University’s Department of Chemistry and NOAA Center for Atmospheric Sciences (NCAS), originally published on the Examiner in February of 2016.  Not only is he a scientific peer, but he is also a hero of mine.  In addition to his duties at Howard University, he regularly takes his team out to the schools in the DC Public Schools system to conduct science demonstrations.  He is an example of regularly being visible, and working to fulfill the needs of students in the community.  In part one of the interview, we talked about his scientific path and his research.  In part two, we discussed his efforts to expose the students in the DC Public Schools to science.  Our discussion actually delves into some of the complexities and challenges of teaching science in the DC schools – only someone involved on the grassroots level would know and understand.

*  *  *

Anwar Dunbar:  At the 2015 Congressional Black Caucus Annual Legislative Conference there were numerous Science, Technology, Engineering and Mathematics (STEM) panels discussing what needs to be done to get African American kids involved in STEM.  You actually go out and do it on the grassroots level though.  You and Miles Holloman, you guys get the chemistry experiments and scientists together, and you go to the various schools in Washington, DC, which is very, very impressive and it’s very necessary.  How did you all get started doing the Community Science festivals?  Also, what was your motivation for doing so?

Vernon Morris:  We started in 2009 and part of our motivation is that we were seeing fewer and fewer students from Washington, DC who were coming to chemistry, or even coming to Howard and majoring in STEM at all.  Secondly, Miles is from DC. He grew up here and went to Dunbar High School and was thus familiar with the school systems close to campus.  I had become more and more familiar with the school systems and some of the deficiencies that needed addressing: retention in science, challenges to science education, and so it was really a response to the fact that our kids weren’t getting science.  They weren’t getting access to science mentors.  They weren’t getting access to why science is fun and it’s an exploratory kind of thing.  Even when I was young, while I didn’t get encouragement from the school, I was always encouraged to get out and explore nature.  I had telescopes.  I had microscopes.  I had computing machines and equipment that my father would buy.  There was no resource for science that I didn’t have access to in the house.  It’s just that when I went to school, I had teachers shuttle me to things like woodshop.

But here in DC, Howard is sitting right in the middle of the community and there wasn’t an effort that I could readily latch onto that was readily going into the community or to the schools and saying, “Here is a network of Ph.D.s and professionals in STEM, and now here is your resource for your teaching or for your classes.”  I couldn’t find anything, so I said let’s just start going out a little bit.  We can put together some experiments, and it will help both the undergraduate and the graduate students communicate science, and build some of that giving back mindset towards the community.  It has been sustained, which is great, and I think the students have picked up on it and really enjoy it.

AD:  So the kids at the schools you’re going to, they really enjoy it?

VM:  Yes, the kids really enjoy it in addition to the Howard undergraduate and graduate students.  I think we’re getting better at it as well.  At the most recent American Association for the Advancement of Science (AAAS science) Day, the coordinator actually came over to our booth, thanked us and told us that we were one of the favorite tables there.  I think we find things that are engaging and bring the science to the kids’ level.  And the community is important.  Its good to have those more polished events and venues to go to, but I think it’s equally, if not more important, to get out into the community because it not only brings experience and exposure to the kids, but we can also talk to the parents about how to support them, and I think that’s what is missed.

All of these diversity programs are great, but the parents and the schools are deficient, we know that.  One of the things I notice about our Caucasian and Asian counterparts is that their parents are heavily invested.  Even for me, without my parents encouragement, it was not going to happen.  And so one of the things we try to stress when we go out is that the parents come.  So before they drop off the kids, or when they’re standing around watching, we always have a student or someone talking to them saying, “Your child really likes this.  Do you know about this or that resource?  We’ve got these camps that they can come and apply to, some of which are free.”  We try to get information to their parents to support their kids, so that’s what the difference is going to be.  We’ve had STEM programs for the last 30 to 40 years, but the percentage of African Americans going into STEM hasn’t changed, and it’s because we haven’t engaged the parents.

AD:  So regarding the low participation in STEM in the DC schools, would that just be in Southeast DC?  And would you say that’s due to budgeting?  Is it an economic or a cultural issue when the parents aren’t really pushing their kids to be involved in or fostering that love for science?

VM:  I don’t think it’s cultural.  I think it’s socioeconomic.  I think you’d find a similar thing across all cultures if the economic stresses are great enough.  If the economic stresses are lower, parents have more time to go to the family science fairs or AAAS for two days.  There may be some cultural aspects, and I wouldn’t say that its limited to southeast, but we know which Wards have the majority African American populations, and we target those Wards preferentially.  The schools we know in those Wards tend to have the least parental engagement and that tends to be the case wherever schools are disadvantaged or challenged.  You find that the parents aren’t necessarily involved and making sure the standards are met.  I think cultural is too strong a way to say it.  I can’t accept that as an African American culture, we don’t expect the highest in educational standards.

AD:  Are the schools you go to receiving adequate resources from the school system?

VM:  I think it’s changed over the last couple of years.  Some of the schools have significant investments, while at other schools, there’s not enough.  There’s a big differential in who gets what in DC.  If you look at the overall budget in DC, people argue that it gets more money per student than a lot of other school districts that are performing better.  I think some of that is the culture of the school system and the dichotomy between the governance of the school systems in Washington, DC.  That’s always been vulcanized and it’s tough to enforce standards when the body who generates the standards has no authority over what goes into the schools.

There is a separate body that governs what goes into the schools.  The politics of the DC schools, Michelle Rhee and all of these education gurus, its seen as a big experiment to a lot of people and the investment in the child has not been there, from what I’ve seen until recently, and I think they’re trying to do some good things now.  The turf wars also create a lot of turnover of good people.  It’s tough because the charter school system has degraded the amount of money that goes into the public schools and most of the schools. Now the private schools actually have access to government funding for education in DC.  So you have rich kids who get additional resources, the best teachers and the smallest classroom sizes, at the expense of schools who really need novel solutions to improve education in general, but STEM education in particular.

Dunbar High School did not have a lab.  There was no teaching lab in Dunbar High School until they built the new school a couple of years ago.  You’ve got one of the more famous high schools in Washington DC, and they couldn’t possibly teach a lab in that school.  They couldn’t teach any biology or chemistry.

AD:  So when you say a turf war, are you referring to competing for dollars between public and private schools?

VM:  Typically, you’ll have a public school office and the state, but since DC is a district and not a state, you have two different offices; DC city public office and then you have another office to govern the schools, but it doesn’t make any sense.  You have two offices that are in charge of the public school system.  So the way that it was drawn up I think is that when the schools were failing, the federal government created another office that would then take over.  The authority of that office, however, never quite usurped the powers that the city already had in existence.  The money goes to this other office, so they get to implement programs, but they don’t have the authority to tell the teachers what they need to do.  That comes from the office that doesn’t have the money.

So you have this schism in managing the school system.  And because you have that infighting there, you have the charter schools that have edged their way in, insisting they’re a part of the school system and should get some of the money, and you have the private schools that have been able to make a similar argument, because charter schools are essentially private schools as well.  You have some very elite private schools in Washington DC (the International School for example), but I don’t know that they need the resources from the DC government.  At the same time, you’re shutting down historical schools in the District because there are so few kids left going to them.  The students get shuttled off to another school that gets over crowded as far as teaching goes.  It’s very nuanced here in DC.  It’s different than a state school system where you have counties and districts and where you have a well-defined hierarchy of management.  Here it’s split.  It’s bifurcated.

AD:  What advice would you give to young African American students who are interested in science, or those who have a curiosity about it, but are not sure that they can do it?

VM:  I would say this about a science career in general, it’s a very rewarding career.  I really enjoy what I do and I love coming to work every day.  It’s part exploration, mentoring and teaching, and writing and being creative.  It’s being quantitative and using both sides of your brain.  And you can give back to the community and the nation in a very unique way.  And I think there are so many opportunities in science.  People think, “I don’t want to do chemistry and I don’t want to sit in a lab and mix chemicals”, but there’s a whole world of stuff outside of the lab that you can do.  It’s the same thing for physics or mathematics, or biology.  It’s an area that if you study it, the world is open to you.

If you study science for example, you can become a writer, but if you study writing only, you won’t necessarily be able to become a scientist.  I think you have much greater opportunities if you study science and follow that pathway.  And I think the fulfillment is a wonderful thing for me.  I love what I do and couldn’t imagine doing anything else.  My advice would thus be: do not fear it, really engage it, and see where it can lead you.

AD:  Well Vernon, thanks a lot.  There were a lot of valuable nuggets that you shared and a lot of people will benefit from this.  Keep up the good work and I will definitely see you soon at one of your community science festivals.

VM:  Okay, that would great.  We’d love to have you come out and help out Anwar.

Thank you for taking the time to read this interview.  A special thank you is extended to Dr. Morris and NCAS for providing the pictures in this post.  As described earlier part one of this black history month interview with Dr. Vernon Morris was published in a separate post.  If you’ve found value here and think it would benefit others, please share it and or leave a comment. To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site. Lastly follow me at the Big Words Blog Site Facebook page, on Twitter at @BWArePowerful, and on Instagram at @anwaryusef76. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.

Tokiwa Smith discusses SEM Link and STEM

One of the goals of the Big Words Blog Site is advocacy of Science, Technology, Engineering and Mathematics (STEM) awareness for under-represented minorities, and starting discussions about increasing access. I personally try to get involved in these types of efforts whenever my schedule permits it.  In the fall of 2016, I assisted Dr. Vernon Morris and his team from Howard University’s NOAA Center for Atmospheric Sciences (NCAS) at the Science, Engineering and Mathematics Link’s (SEM Link) First Annual DC, Maryland and Virginia (DMV) STEM Career Fair.  Recently I had the opportunity to interview the Founder and Executive Director of SEM Link, Tokiwa Smith.  We discussed the organization, its inception and goals, and the current challenges of exposing under-represented minorities to STEM education which would lead to their ascension into these careers.

Anwar Dunbar: First off Tokiwa, thank you for agreeing to talk about your background and very important for individuals from our backgrounds to openly discuss our careers and how we got to where we are. With that said, let’s start with you.  Talk about your background.

Tokiwa Smith: I have a Bachelor’s of Science Degree in Chemical Engineering from Florida A & M University. I’ve used my STEM degree to help inspire and train future STEM professionals – pre-college and undergraduate students – through my work at various academic institutions, non-profit organizations and government agencies.

AD:  Most of my African American peers in STEM had a mentor (myself included), someone who recognized their potential and encouraged them to pursue a STEM career.  Was there a mentor or mentors along the way who encouraged you to study Chemical Engineering, or were you always interested in that discipline?

TS: Even though I grew up in a college educated family and most of the adults in the village that raised me were college educated, there were no STEM professionals in my network, other than my aunt who was a Microbiologist for the Food and Drug Administration. I was a girl who always loved and excelled in math and science.  My 6th grade teacher, Mrs. Richardson, noticed my aptitude for math and science and told my mother to encourage me in those subjects. So throughout my formative years, I was encouraged by my mother and my teachers to excel in math and science.  I thus always had confidence in my abilities in STEM.  It was in 10th grade, in Mrs. Shy’s chemistry class, that I discovered my favorite STEM discipline was chemistry.  In 11th grade as I was getting tutored in physics by a friend’s father who was a Cosmetic Chemist, and I discovered that I didn’t want to be a chemist.  I did some research and learned about chemical engineering.  I decided to major in Chemical Engineering because it combined my love of chemistry and math.

I didn’t meet a female African American Chemical Engineer until my sophomore year in college. The following year I took my first class with professor Dr. G. Dale Wesson, the only African American professor in the department.   I was further exposed to Chemical Engineering through his mentorship and his taking me to my first STEM professional conference. At that conference I was able to meet a myriad of people – students from other colleges and universities, and STEM professionals who made me aware of the possibilities for career options that I could pursue with a Chemical Engineering degree.

AD: What is SEM Link and how did you start it?  Why did you start it?

TS: Science, Engineering and Mathematics Link, Inc. (SEM Link) is a tax-exempt national nonprofit organization, which I founded in 2005 in Atlanta, GA, on the premise that exposure to members of the STEM communities is critical to student achievement and career exploration in math and science.  Our programs and events enhance the STEM educational experience for K-12 students by providing them with opportunities to engage in hands-on STEM activities, exploration of STEM careers and learning about real-world applications of STEM in their classrooms and communities.

The idea to start SEM Link came to me in 2002 while working at a school in Atlanta. I saw many brilliant students who had the aptitude to pursue STEM careers, but weren’t considering them because they didn’t know any adults who were STEM professionals.  I had people in my network that I started inviting to the school for various activities (career exploration activities and tutoring, etc.) to provide opportunities for students to meet and interact with STEM professionals.

In 2005, I decided to create a nonprofit organization to expose more youth to STEM education and careers; specifically to provide opportunities for them to meet and interact with STEM professionals and to engage in hands-on STEM activities. I chose the name Science, Engineering and Mathematics Link (SEM Link) because, at the time, there was no focus on technology (T).  I wanted the organization to be the link (connection) between K-12 students and the STEM community.  Our vision statement is, “Unveiling potential through exposure,” because the inaugural Board of Directors and I thought it best described the vision that we had and the work that we wanted to do as an organization.  We could help create the pipeline for the future STEM workforce by exposing youth to STEM education and careers.

AD: What are you goals for SEM Link?

TS: SEM Link currently serves two urban areas, Atlanta and the DMV. It is our goal within the next five to seven years to expand to six additional areas. The urban areas we are looking at expanding to include: Chicago, Dallas, Miami and other urban areas on the east coast, in the south and midwest. In addition, we are in the process of transitioning from a startup phase to a sustainability phase. The process includes recruiting new members to the Board of Directors, increasing the number of individual donors, building and maintaining relationships with corporate partners, and starting a major gifts program in the next fiscal year.

AD: What are the challenges in getting under-represented minorities involved in STEM?

TS: Minorities, especially African Americans, come from cultures that have had scientists, engineers, mathematicians and inventors dating back to Ancient African civilizations.  African Americans have continued throughout history and today to make an impact in the STEM fields as professionals and inventors.  The first challenge to me is representation; minorities don’t see enough folks that look like them who are STEM professionals.  Students aren’t told enough of the stories of the successes of former and current minority STEM professionals.  They aren’t exposed often enough to opportunities for them to meet and interact with STEM professionals of color.

The second challenge is that students don’t get an opportunity to engage enough in hands-on STEM activities inside the classroom and during out of school time. Although it’s important for students to learn and master STEM concepts and theories, it isn’t limited to a textbook.  It’s hands-on and it asks and answers questions that we may or may not already have the answers to.

The final challenge is that at times we only encourage the “smart” kids to pursue STEM careers. There are children that have a natural inclination towards STEM and you can observe it based on their interests and how they play. For example, a kid that collects insects for fun has a natural inclination to be a biologist even if they may have academic deficiencies in school.  We should also encourage those kids to pursue STEM careers and provide them with the academic support they need to overcome those deficiencies and excel academically.

AD:  That’s interesting.  I can confirm the lack of STEM role models.  In my youth in Buffalo, NY, I don’t remember seeing any STEM professionals of color.  Biology was my favorite course and I just naturally followed it.

In terms of being careful not to only focus on the “smart” kids, one of the things my father, a retired science teacher, told us once was that individuals who grow up in inner cities and substandard conditions are actually very creative and inventive out of necessity. Malcolm X also discussed this in his autobiography regarding the wasted intellectual talent in our inner cities.

I was talking to a fellow toxicologist about how it’s more difficult to give students a good look at parts of the biological sciences because you have to take them to research centers to see the experiments being performed versus computers, cell phones and designing apps and video games – the more “techie-stuff”. Have you found that students seem to flock towards one more than the other?

TS: I think the reason that kids are flocking towards techie stuff is because of the current trend to push teaching all kids to code. The reality is not all kids have the ability or are interested in coding and tech.  However, coding and tech are easy to push because it is something that the general public can understand because, unlike other STEM disciplines, they can easily see the connections to their everyday lives.  Those of us that work in other STEM disciplines must do a better job of telling the stories of what we do as STEM professionals and help the general public to see the connections between STEM disciplines and their everyday lives.

I disagree that the only way to expose kids is to take them to places where professionals in engineering, biological and physical sciences work. Although that would be nice and it is a great experience for the students, it isn’t always feasible.  Kids make decisions on what they will become when they grow up based on the careers of the adults in their lives; even people that they may meet only once.  A child meeting a STEM professional one time and learning what is possible for them can change the entire trajectory of their lives.  So the first step is for STEM professionals to get out of their workplace and go to where the kids are – schools, community events, etc. – and talk to the kids about what you do, why you do it and your career path to get there.

The second thing is to talk to kids about how your fields connect to their everyday lives. For example, a toxicologist can talk to students about things like lead poisoning and how it can be detected in one’s body. The final thing is that STEM professionals can engage students in hands-on and/or project based activities that can expose the students to their field.

AD:  Well, Tokiwa, those are all of the questions that I have.  Do you have any parting comments?  Would you like to tell the readers how they can learn more about SEM Link, and where they can contact you, on Twitter for example?

TS: My parting comment is the keys to getting kids interested in pursuing STEM are encouragement and exposure. We must encourage students to engage in activities in the STEM disciplines for which they show an aptitude and passion.  We also must encourage students to engage in out of school activities – doing hands-on STEM activities on their own. We must expose them to as many STEM disciplines and out of school time activities as we can. As adults, we must be willing to step outside of our comfort zone and sometimes go against the trends.  If we do these things, we will allow our children to discover a passion and aptitude to pursue STEM careers.

To find more information about SEM Link, you can visit our website at: www.semsuccess.org, and sign up for our mailing list. You can follow us on social media as well. Our Twitter handle is @semlink.  We are also on Facebook and Instagram.  Lastly, you can connect with me on Twitter.  My Twitter handle is @tokiwana.

AD:  Well thank you, Tokiwa, once again for your willingness to discuss SEM Link.  It’s very important work and myself and others look forward to seeing your effort grow.  Also thank you for providing the pictures used in this piece.

Thank you for taking the time to read this interview. If this interview, you might also enjoy

Dr. Quin Capers, IV discusses his path #BlackMenInMedicine, and the present landscape of medical education
Dr. Namandje Bumpus discusses her educational path, and her research career in Pharmacology
A Black History Month interview with Howard University’s Dr. Vernon Morris part one
A Black History Month interview with Howard University’s Dr. Vernon Morris part two

If you’ve found value here and think it would benefit others, please share it and or leave a comment. To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site. Lastly follow me on Big Words Blog Site Facebook page, on Twitter at @BWArePowerful, and finally on Instagram at @anwaryusef76. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.

 

A review of Hidden Figures

I recently co-wrote movie reviews with my brother Amahl Dunbar for Marvel’s Dr. Strange and Rogue One: A Star Wars Story – both of the Super Hero and Science Fiction genres.  This review will switch gears slightly and focus on a film with more of a historical focus; Hidden Figures based upon the book Hidden Figures: The American Dream and Untold Story of the Black Women Mathematicians Who Helped Win the Space Race by Margo Lee Shetterly.  The film starred Taraji P. Henson, Janelle Monae, Octavia Spencer and Kevin Costner.  Unlike the previous reviews which were done in a conversational format, Amahl and I will independently give our thoughts on what stood out to us about the film.

Amahl:  In terms of Hidden Figures, I was impressed with NASA mathematician Dorothy Vaughan (Octavia Spencer).  In the story, when IBM first delivers the computer to NASA, the engineers figured out how to assemble it, but they couldn’t operate it.  The computer was critical for expediting NASA’s space travel calculations.  Dorothy saw tremendous opportunity and acted on it.  She had the foresight to learn the programming language Fortran (Formula Translation), from a book at a local library.  When she demonstrated she could operate and program the computer, she was immediately promoted and transferred.  She also had the foresight to teach Fortran to the other female African American mathematicians thus ensuring their long term employment at NASA.  So I think her having the insight to see the opportunity in front of her and then the assertiveness to take advantage of it were huge and great teaching points.  These are two very important ingredients for success.

Hidden Figures is as culturally and historically relevant as all the seasons of the Cosby Show.  I can’t wait for it to come out on Blue-Ray.

Anwar:  As a Science, Technology, Engineering and Mathematics (STEM) advocate and professional myself, a current challenge is getting African American students interested in STEM, and then empowering them to stick with it.  Recently at the kickoff for the Toxicology Mentoring and Skills Development Training program’s inaugural weekend, I had a discussion with the chair of the program and we discussed the difficulties in getting minorities involved in Toxicology (and other STEM careers).  At the same meeting one of the speakers noted that the majority of the time when minority students get discouraged and leave the sciences, they usually change their majors to one of the Humanities or the Arts.  This is not a knock on the non-science fields but instead in part is a reflection of how the sciences are viewed by students of color – especially for those who have no STEM professionals in their families – our case as children.  For me, this is the beauty of Hidden Figures.

Without giving away the plot beyond what my brother described above, Hidden Figures tells the story of Katherine Goble Johnson (Henson), Dorothy Vaughn (Spencer), and Mary Jackson (Monea) who all greatly impacted the Space Race of the early 1960s between the United States and the Soviet Union.  Each of the three leads played key roles in the United States’ mission to put a man in space – optimization of the space craft (Jackson), implementation of the IMB computer to expedite NASA’s calculations (Vaughn), and performing the initial critical calculations for the astronauts’ space travel (Johnson).  Taraji P. Henson’s portrayal of Katherine Goble Johnson seemed to be the main story line as she was central to working out the calculations for John Glenn’s orbit and re-entry into the earth’s atmosphere.

Hidden Figures is a valuable film in that it shows African American women portrayed in ways that we’re normally not used to seeing them in media.  While she’s most known these days for playing “Cookie” on Fox’s Empire for example, Taraji P. Henson’s role as Katherine Goble Johnson is arguably a more important as it depicts an African American woman performing complex mathematical calculations impacting NASA’s space missions.  Most importantly, the film highlights the contributions of African Americans to one of the United States’ most celebrated breakthroughs; manned space travel.  Unfortunately prior to the movie it wasn’t widely recognized who all contributed to John Glen’s mission – something that occurs often in US History when it comes to people of color.

Hidden Figures is a very important film to see particularly for young children who haven’t decided on a career path.  If they have an inkling of an aptitude for STEM, films like Hidden Figures can definitely help encourage them to pursue a STEM career.  A film like Hidden Figures would have been very valuable in my own youth though I was fortunate to have the pieces in place to allow me to pursue my own careers in Pharmacology and Toxicology – environment and mentors.  It’s not that way for every child/student.

Our Twitter handles are @amahldunbar and @BWArePowerful. If you liked this review, please do click the “like” button, leave comments, and share it. Please visit my YouTube channel entitled, Big Discussions76. To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right-hand column in this post and throughout the site, or add the link to my RSS feed to your feedreader. Lastly follow me on the Big Words Blog Site Facebook page, and on Instagram at @anwaryusef76. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.