A look at STEM: What is Toxicology?

Similar to Pharmacology, the field of Toxicology is centuries old and is very complex regarding the wealth and depth of information available.  It is also still evolving today.  The goal of this post is not to address every detail of the field, but instead to give readers a basic introductory understanding of the discipline.  Further details about the many aspects of Toxicology can be accessed online, or in scientific journals.

When I meet people outside of my scientific circles at career and STEM fairs, Toxicology doesn’t get confused with other disciplines the way Pharmacology and Pharmacy do – I thus won’t open with a story about misunderstandings.  I’ll simply say that Toxicology an exciting field with vast opportunities for individuals who are trained in it.  Following my principle of “Creating Ecosystems of Success”, I wanted to write an overview of the field – particularly for parents and young students who have an aptitude for science and may be interested in Toxicology as a career one day.  As you’ll see later on, Toxicology is an important component of numerous industries, and scientists with this training will never be without jobs.

“The dose makes the poison,” is the popular toxicology adage credited to the Swiss physician and alchemist Paracelsus.  Simply put, given the proper dose, even chemicals and substances considered harmless can be poisonous – too much sugar or water for example.  Dosage or the amount of a substance one is exposed to is a key component of Toxicology – keep this in mind as you read through this post.  Also keep in mind the route of exposure.  Toxicologists are always considering that an individual can be poisoned through oral ingestion, or through either dermal or inhalation exposures.

I think of Pharmacology and Toxicology as “sister” sciences – both dealing with the effects of xenobiotics on living systems.  While Pharmacology focuses more on the therapeutic effects of xenobiotics, Toxicology focuses on the harmful effects – in most cases humans but in some instances other mammalian and non-mammalian species.  These effects can occur on the molecular, cellular, tissue, and whole organism levels. While Pharmacology and Toxicology are separate disciplines, they have several overlapping principles and skill sets allowing individuals credentialed in one to work in the other.

I’ll start my discussion of why Toxicology is important with drugs.  Both biotechnology and large pharmaceutical compan9ies have to understand and report a drug’s toxicological profile to the federal government before selling it to the general public.  Many promising drugs actually never make it to market because they’re too toxic.  Some actually make it and are then recalled – Rezulin for example.

There are also both clinical and research contexts for Toxicology.  Similar to Pharmacology, all medical practitioners (Anesthesiologists, Physicians, Pharmacists, Nurses, Surgeons, etc.) must receive some toxicology training as they all need an understanding of the potential toxicities of the drugs they’ll ultimately prescribe.  They need to understand how much of a given pharmaceutical will be beneficial vs. harmful to patient – a drug’s “Therapeutic Index”.  If the patient is taking multiple medications, “Drug-Drug” interactions can result – toxicities and side effects resulting from one or more drugs being present in the body at the same time causing others be poisonous.  The patient’s current liver and kidney function are critical here as well as they will ultimately determine how long the drugs persist in the body.  In an emergency room, physicians must often determine what a patient may have been poisoned by in order make swift life-saving decisions.

Forensic Toxicologists are instrumental in solving crimes and deaths.  They’re masters of detecting chemicals in the body’s tissues and understanding how they may have led to a victim’s death.  Michael Jackson’s overdose on “Propofol” comes to mind, and is just one of many examples.

In the research context, think about experimentation in laboratory settings – well designed studies run by scientists asking questions and looking for specific answers.  Initial toxicological studies typically involve determining how a toxicant exerts its effect on the molecular and then on the tissue/organ levels – similar to how Pharmacologists identify new drug targets.  After determining a toxicant’s molecular mechanism, there is then the need to determine the toxic dose range of the chemical at the molecular, tissue and whole animal levels.  This is called a “Dose Response” – a critical tool of both Pharmacology and Toxicology where scientists look to determine if increasing the amount of the chemical in question, increases the amount of biological response.  This applies to a broad spectrum of chemicals – pharmaceuticals and industrial chemicals alike.

What am I referring to when I say industrial chemicals?  Simply look around your home at all of the products you use daily including: household cleaners, cosmetics, pesticides (Raid for example), and even additives and preservatives in some the foods we consume.  Thus when you think about Toxicology, think very broad in terms of scope.  For this reason, individuals with toxicology training will never be without jobs as everything we use must be screened for safety.  Toxicologists are currently in high demand.

Similar to Pharmacology, there are numerous sub-disciplines within Toxicology.  The following is a list of some of the major areas beyond what’s been described thus far.  These areas are heavily considered by government agencies and private sector companies who all need toxicologists to create new products, determine the safety of those products, and lastly determine the fate of those products once used:

  • Aquatic, Eco- and Environmental Toxicology: While these are distinct disciplines all in themselves, I’ve grouped them together for simplicity. They collectively consider toxicity to non-human life – aquatic, avian, other terrestrial life.  They consider what happens to ecosystems if a particular species is inadvertently killed off.  Some questions involve where the toxicant goes in our environment, how long it stays there, and if it breaks down into something else more or less toxic.
  • Computational (In silico) Toxicology: Uses computational models, to predict mammalian toxicities. “Tox21” is a current effort to minimize animal testing using computational and predictive models.
  • Entomotoxicology: Determines how a given chemical is toxic to insect species. This is very important for the creation of pesticides, and it’s also critical for Ecotoxicology as the chemical designed to control specific insects may easily kill something else unintended.

  • Food Safety Toxicology: Looks at the potential toxicity of man-made or natural ingredients intentionally added to our food. Heat formed compounds are of particular concern – acrylamide and furan are examples which can spontaneously form during the cooking of certain precursor molecules.  Lastly the ingredients in food packaging are also considered as they can be ingested through the foods they are in contact with.
  • Forensic Toxicology: As described above, deals with the solving of crimes – often determining what a victim was poisoned with.
  • In vitro Toxicology: Characterizes how a toxicant works using cell models and protein systems as opposed to whole animals.

  • Mammalian Toxicology: Studies the effects of a given toxicant on mammalian systems – traditionally using animals to model to human toxicity. Experiments can be designed over multiple dose ranges and through any of the three routes of exposure – oral, dermal or inhalation.  Time of these studies can range from hours to days, to years.  Varying indices can be studied such as life-stage sensitivity, cancer potential, or the ability to inhibit one’s immune response.  Mammalian toxicology is very important in “Regulatory” settings described below.
  • Modes of toxic action: Characterizes how toxicants exert their action on the molecular, cellular and whole animal levels. This information can be used to design chemicals to control something like a pest, or to determine how a cancer tumor-type forms.
  • Medical Toxicology: As described above, deals with the prevention of patient poisoning in medical settings.
  • Occupational Toxicology: Involves potential toxicity to workers who are in contact with a given toxicant and may get exposed through their skin or through inhalation.

  • Regulatory Toxicology (Private Sector): When the private sector creates a product, it must work with federal and state government agencies to determine the safety of that product. The products can be: drugs, pesticides, cosmetics, food additives, paints – you name it.  Regulatory Toxicologists in the private sector must understand government laws and guidelines for the products they’re creating – knowing which animal and in vitro studies to run to get their product registered in the most cost efficient way.
  • Regulatory Toxicology (Public Sector): Involves government and state agencies determining the safety of products produced by private industry. This usually consists of considering real world human exposures, and looking at any pertinent data (animal, in vitro, exposure or physical chemical) that might help model those exposures to determine levels of safety or lack thereof.
  • Toxicogenomics: Similar to Pharmacogenomics, looks at the genetics unique to individuals to determine potential increased toxicity for that individual.
  • Toxinology: Deals specifically with animal, plant and microbial toxins.
  • Toxicokinetics: Similar to the description in my Pharmacology post, Toxicokinetics deals with how the body handles toxicants in terms of absorption (entry to the body), tissue accumulation (distribution), biotransformation (metabolism) of the molecule, and excretion (elimination). I will revisit Pharmacokinetics and Toxicokinetics in greater detail in a separate post.

So have I convinced you that toxicologists are literally everywhere?  Similar to pharmacologists, toxicologists can leverage their skill sets to work in other capacities besides academia, and the public and private sectors.  When combined with other fields such as law and business, toxicologists can start their own companies – consulting for example, and in some cases they can create new health-related technologies and innovations.

There are numerous avenues by which to pursue training in Toxicology.  According the website of the Society of Toxicology, training can start as early as high school and the amount of training one pursues (Bachelors, Masters, Ph.D.) will depend upon specific career goals.  As there is tremendous overlap in skill sets of scientists in the biomedical sciences, one need not have a degree in “Toxicology” per se to work in the field in most cases. An exception is the federal government which is very stringent in terms of matching one’s academic credentials exactly with job openings regardless of one’s actual scientific training and expertise.  An individual for example with a Masters or Ph.D. in another biological science, MD, or a DVM for example can receive training in Toxicology through postdoctoral fellowship.

Toxicology also has a unique certification – the Diplomate of the American Board of Toxicology (DABT).  Earning one’s DABT allows toxicologists to be nationally certified which is particularly important in the private sector, and in capacities such as serving as expert witnesses in litigations.  The European Union has a similar certification titled “European Registered Toxicologists” (ERT).

If you are interested in learning more about the exciting field of Toxicology, I suggest that you visit the website of the Society of Toxicology (SOT) – the major professional society for Toxicology.  Click on the “Careers” tab and scroll down to the “Becoming a Toxicologist” tab.  A wealth of information is available talking about numerous aspects of the field.  Similar to Pharmacology, Toxicology has its own annual meeting hosted by SOT where scientists gather to network, discuss their results, employers seek new job prospects, and companies show their latest devices and technologies.

Thank you for taking the time to read this post, and I hope I was able to shed some light onto what Toxicology is.  If you enjoyed this post, you might also enjoy:

A special thank you is also extended to Dr. Chester Rodriguez for his contribution to this post, and sharing the importance of earning one’s DABT.

If you’ve found value here and think it would benefit others, please share it and or leave a comment.  To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site.  Lastly follow me on Twitter at @BWArePowerful, and at the Big Words Blog Site Facebook page. While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.

A look at STEM: What is Pharmacology?

The field of Pharmacology is centuries old and it is very complex with respect to the wealth and depth of information available.  It is still evolving today.  The goal of this post is not to address every detail of the field, but instead to give readers a basic introductory understanding of the discipline.  Further details about the many aspects of Pharmacology can be accessed online, or in scientific journals.

I earned my Ph.D. in Pharmacology from the University of Michigan.  I admittedly didn’t understand the field initially, although I did know that it dealt with drugs and hoped that a degree in it would one day secure a position for me in the Pharmaceutical industry.  Since starting my studies in 1999, completing my degree in 2005, and starting my current career as a Regulatory Scientist, I’ve gotten the same question over and over again, “You have a background in Pharmacology?  Are you a Pharmacist?”  At Career and STEM Fairs, I get this question a lot, and thus following my principle of “Creating Ecosystems of Success“, I wanted to write a brief overview of the field – particularly for parents and young students who have an aptitude for science and may be interested in Pharmacology as a career one day.

“Simply put, Pharmacy is the study of what drugs do to man, and Pharmacology is the study of what man does to drugs,” said one of the Cancer Pharmacology faculty in our Principles of Pharmacology course during my first year of graduate school.  This statement explained in a very simple way some of the differences between the two disciplines.  Pharmacy is the study of the actual drugs administered to patients as therapeutic agents and its practitioners work at various institutions including hospitals, medical centers, and drug stores – CVS for example.  Pharmacists are health professionals, earn Doctor of Pharmacy degrees (Pharm Ds), are experts on medications, and are responsible for dispensing medicines.  Pharmacology is a basic research science that studies the mechanisms underlying the therapeutic effects of pharmaceuticals and potential drug candidates with the goal of developing and testing of new drugs.

All medical practitioners (Anesthesiologists, Physicians, Pharmacists, Nurses, Surgeons, etc.) must take Pharmacology courses as they all need some understanding of the mechanisms of the drugs they ultimately prescribe.  Pharmacologists are the actual researchers performing experiments trying to create new drugs and identify new drug targets.  They further seek to characterize how mammalian systems (in most cases human although they are also involved in developing veterinary drugs) handle molecules at the molecular, cellular, tissue and whole organism levels.  It’s a vast field with many areas of specialization that I’ll discuss in the remainder of this post.

Pharmacology classically can be divided into two parts; Pharmacokinetics, which deals with how the drug is absorbed and eliminated by the body, and Pharmacodynamics, which deals with how the drug exerts its medicinal effect mechanistically.  The following sub-disciplines within Pharmacology generally fall under one of these two umbrellas or, in most cases, are a mixture of the two.  Each of us or someone we know has taken a drug or a treatment which has been impacted by one of these areas.  Any pharmacologist reading this can easily further parse this list out into greater detail, but again this was written for a general audience:

  • ADME/Drug Metabolism: Deals with how the body handles the therapeutic molecules in terms of absorption (entry to the body), tissue accumulation (distribution), biotransformation (metabolism) of the molecule, and excretion (elimination). Another focus of ADME/Drug Metabolism is “Drug Transport” which focuses on how drugs are absorbed and effluxed from cells using membrane channels and transporters impacting their effectiveness.  I will revisit ADME/Drug Metabolism in greater detail in a separate post as me and some of my peers know it pretty well and find it to be a very exciting aspect of both Pharmacology and Toxicology.
  • Antimicrobial Pharmacology: Involves the control of bacteria, fungi, and viruses to fight off or prevent infections.
  • Autonomic Pharmacology: Deals with how the drug interacts with the Autonomic Nervous System (that part of the nervous system responsible for controlling bodily functions that are not consciously directed such as the heartbeat, breathing, and the digestive system) particularly through pathways involving epinephrine, norepinephrine, dopamine, and seratonin.
  • Cancer Pharmacology: Deals with drugs used in the treatment of cancer – usually some form of chemotherapy.
  • Cardiovascular Pharmacology: Deals with drugs used in treatment of heart disease and regulation of blood pressure.  A well-known class is the “Statins” – cholesterol lowering drugs such as “Lipitor“.
  • Endocrine and Receptor Pharmacology: Deals with how a given drug binds, interacts or even blockades a given cellular receptor, and then what the receptor does or doesn’t do to impact the homeostasis of that cell or tissue. The receptor can be membrane bound or cytosolic (many hormone receptors).
  • Drug Discovery: Typically associated with the private sector and deals with the identification of new drug entities and the identification of new drug targets. In industry, pharmacologists generally refer to drugs as either “small molecules” which are our classic drugs like Aspirin (~180 g/mol), or “large molecules” (as heavy as 150,000 g/mol) also known as “biologics” which are generally proteins which have therapeutic effects.  An example is Abbvie’sHumira”.  The units “g/mol” or grams per mole designate a chemical’s molecular weight and as you can see the size difference between the two classes is considerable.
  • Neuropharmacology: Similar to Autonomic Pharmacology but deals with all of the other parts of the nervous system such as pain responses – analgesics and anesthetics for example.
  • Pharmacogenomics: This new and exciting field looks at the genetics unique to individuals to determine the best treatments and dosages for that individual.

For each of these sub-disciplines there is a clinical side and a research side.  The clinical side is self-explanatory – it involves treating patients for various diseases as well as the prevention of illness by the above mentioned medical practitioners.  Think of the many medications you have been prescribed when you go to see medical doctors when you’re sick or for checkups, emergencies or surgeries.  But where do these medications come from originally?  Also, where will new medications come from in the future?

This is where the research side come comes into play.  At institutions like my alma mater, and in the private sector, there are scientists working year round on research projects asking questions about current medications in addition to trying to unlock the secrets of nature to create new therapeutics.  The investigations they perform involve testing molecules using whole animal models, cellular models, and in vitro systems to ask questions at the molecular level (proteins, lipids, DNA and RNA) about what the compound does.  It’s this research that can get very esoteric to the general public and that is published in academic journals including: Drug Metabolism and Disposition, the Journal of Pharmaceutical and Experimental Therapeutics, and Molecular Pharmacology.

Pharmaceutical companies like Merck and Pfizer conduct research as well but instead of doing it strictly to find new knowledge, it’s to create new drugs that they can sell.  The same is true for smaller Biotech companies like Biogen.  Both need scientists with backgrounds in Pharmacology.  The Federal Government also employs scientists with backgrounds in Pharmacology to determine the safety of new drugs before they can be prescribed to the general public.  The same is true for food products and chemicals used in those products, so Pharmacologists are literally everywhere.

Pharmacologists generally receive their training at major research universities.  While undergraduates can get training in Pharmacology – nursing students for example, degrees in Pharmacology are usually conferred at the Masters and Ph.D. levels and support for the student’s educational expenses as well as a modest salary are provided.  Upon attaining these degrees, scientists then determine which sector they want to pursue – academia, the private or public sectors, or nontraditional careers.  With the skills obtained in graduate school, scientists with these backgrounds have the flexibility to combine their knowledge sets with other disciplines to go into a wide variety of areas in addition to drug discovery in pharmaceutical companies and biotechs including: consulting, Toxicology, patent law and even starting their own companies.

If you are interested in learning more about the exciting field of Pharmacology, I suggest that you visit the website of the American Society for Pharmacology and Experimental Therapeutics (ASPET).  You can then click on the Education & Careers link near the top of the page.  In the right hand column, there is a link titled About Pharmacology, that provides a great deal of interesting information.  Speaking of ASPET, all scientific disciplines have their own professional societies with annual meetings that rotate cities every year, and where scientists congregate to show their results, and network.  The two major professional societies for pharmacologists are ASPET, and the International Society for the Study of Xenobiotics (ISSX).

Thank you for taking the time to read this post, and I hope I was able to shed some light onto what Pharmacology is.  If you enjoyed this post, you might also enjoy:

A special thank you is also extended to Dr. Paul Hollenberg, Chair of the Department of Pharmacology at The University of Michigan when I was a student, who graciously looked at this post and gave feedback prior my publishing it.

If you’ve found value here and think it would benefit others, please share it and or leave a comment.  To receive all of the most up to date content from the Big Words Blog Site, subscribe using the subscription box in the right hand column in this post and throughout the site.  Lastly follow me on Twitter at @BWArePowerful, and at the Big Words Blog Site Facebook page.  While my main areas of focus are Education, STEM and Financial Literacy, there are other blogs/sites I endorse which can be found on that particular page of my site.

The Toxicology Mentoring and Skills Development Training program hosts inaugural weekend

“Going forward, by 2050 we’re going to have to double food production to feed the population – a tremendous responsibility. The biggest threat in my mind to that grand challenge is contamination to our water and our soil from various chemicals and toxins,” said Dr. Patrick Halbur.  “We need people focused on that area to prevent and solve that problem, and so there are tremendous opportunities in Toxicology.

“We live in a world with infectious diseases and that’s always a big threat, but we almost always figure out ways to eradicate them or develop a new vaccine to solve those diseases. But the grand challenges I think are in Toxicology.”

From January 14-15, the Toxicology Mentoring and Skills Development Training Program (ToxMSDT) hosted its inaugural weekend at Iowa State University. The program was sponsored by the National Institutes of Health (NIH), Iowa State University, Tuskegee University, The Ohio State University, the Leadership and Mentoring Institute (AABHE), and the Interdepartmental Toxicology group (Tox).

Just briefly, Toxicology is the science of characterizing the effects of poisons (toxicants) on living organisms. The ToxMSDT program itself entails pairing up mentors in the field of Toxicology from both the public and private sectors with students from Iowa State and Tuskegee Universities.  Mentors and mentees established contact prior to the weekend before meeting in person at the inaugural weekend.  The weekend consisted of full slate of talks and workshops including:

  • Welcomes by Lisa Nola (ISU College of Veterinary Medicine), Patrick Halbur (Chair, Veterinary Diagnostic and Production Animal Medicine), Richard J. Martin (Chair, Interdepartmental Toxicology), and Wilson Rumbeiha (ToxMSDT Program PI);
  • A keynote presentation: Career Choices for Toxicologists by mentor Robert Casillas, Ph.D., Vice President, Strategic Global Health Security, MRI Global and the Hispanic Organization of Toxicologists (HOT);
  • A training titled Developing a Mentoring Relationship that Works by Barbara Johnson, Ph.D., Director of the Leadership and Mentoring Institute, affiliated with the American Association of the Blacks in Higher Education;
  • A student poster competition and;
  • A Bioethics Talk titled What is Done in the Dark? By Deloris Alexander, Ph.D. of Tuskegee University.

Toxicologists are the guardians for human, animal and environmental health,” said Dr. Wilson Rumbeiha, Professor of Toxicology at Iowa State University and Coordinator of the ToxMSDT program. The goal of the ToxMSDT program is to support educational activities that complement and/or enhance the training of a diverse workforce to meet the nation’s biomedical, behavioral and clinical research needs.  While Toxicology is an essential component of the nation’s biomedical research enterprise, there is a lack of under-represented minorities in the field where there coincidentally is a shortage of scientists in general – especially Doctors of Veterinary Medicine/Doctors of Philosophy (DVM/Ph.D.).

Toxicologists are in many places, and the field impacts many, many lives around the world. Toxicologists make the world a safer, healthier and more sustainable.  That’s a message I want you to take as I proceed through my presentation,” said Colonel and Dr. Richard Casillas, one of the mentors in the program.  Dr. Casillas’s talk described his educational and career paths which led him from the world of academic research to the military, and then to the private sector.  A major theme of his talk was the career flexibility that his training in Toxicology afforded him.

To learn more about Toxicology and the ToxMSDT program, go to: http://www.toxmsdt.com/.

If you liked this article, please do share it, and leave comments.